metadata
library_name: stable-baselines3
tags:
- LunarLander-v2
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: LunarLander-v2
type: LunarLander-v2
metrics:
- type: mean_reward
value: 244.16 +/- 18.09
name: mean_reward
verified: false
PPO Agent playing LunarLander-v2
This is a trained model of a PPO agent playing LunarLander-v2 using the stable-baselines3 library.
Usage (with Stable-baselines3)
from stable_baselines3 import PPO
from stable_baselines3.common.monitor import Monitor
from huggingface_sb3 import load_from_hub
repo_id = "alperenunlu/PPO-LunarLander-v2"
filename = "PPO-LunarLander-v2.zip"
checkpoint = load_from_hub(repo_id, filename)
model = PPO.load(checkpoint, print_system_info=True)
eval_env = Monitor(gym.make("LunarLander-v2", render_mode="human"))
mean_rwd, std_rwd = evaluate_policy(model, eval_env, n_eval_episodes=10)
print(f"mean_reward: {mean_rwd}±{std_rwd}")