dinov2-base-finetuned-dermnet-lr3-5-0.05wd-csr

This model is a fine-tuned version of facebook/dinov2-base on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8119
  • Accuracy: 0.7958

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine_with_restarts
  • lr_scheduler_warmup_ratio: 0.05
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
2.7488 1.0 98 2.5158 0.3722
1.9402 2.0 196 1.7710 0.5170
1.4938 3.0 294 1.4939 0.5996
1.1226 4.0 392 1.3168 0.6256
0.9329 5.0 490 1.1906 0.6705
0.8039 6.0 588 1.0882 0.7067
0.6426 7.0 686 1.1061 0.6930
0.5777 8.0 784 1.0133 0.7227
0.477 9.0 882 0.9681 0.7364
0.3961 10.0 980 0.9402 0.7581
0.3451 11.0 1078 0.9311 0.7509
0.337 12.0 1176 0.8897 0.7661
0.2348 13.0 1274 0.8616 0.7762
0.1992 14.0 1372 0.8241 0.7951
0.182 15.0 1470 0.8312 0.7878
0.1556 16.0 1568 0.8245 0.7857
0.1516 17.0 1666 0.8170 0.7958
0.1569 18.0 1764 0.8202 0.7878
0.1364 19.0 1862 0.8117 0.7951
0.1427 19.8021 1940 0.8119 0.7958

Framework versions

  • Transformers 4.50.3
  • Pytorch 2.6.0+cu124
  • Datasets 3.5.0
  • Tokenizers 0.21.1
Downloads last month
37
Safetensors
Model size
86.7M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for alxfgh/dinov2-base-finetuned-dermnet-lr3-5-0.05wd-csr

Finetuned
(42)
this model

Evaluation results