Model Overview

  • Model Architecture: Llama-3.3
    • Input: Text
    • Output: Text
  • Supported Hardware Microarchitecture: AMD MI350/MI355
  • ROCm: 7.0
  • Operating System(s): Linux
  • Inference Engine: vLLM
  • Model Optimizer: AMD-Quark
    • Weight quantization: OCP MXFP4, Static
    • Activation quantization: OCP MXFP4, Dynamic
    • KV cache quantization: OCP FP8, Static
  • Calibration Dataset: Pile

This model was built with Meta Llama by applying AMD-Quark for MXFP4 quantization.

Model Quantization

This model was obtained by quantizing Llama-3.3-70B-Instruct's weights and activations to MXFP4 and KV caches to FP8, using AutoSmoothQuant algorithm in AMD-Quark.

Quantization scripts:

cd Quark/examples/torch/language_modeling/llm_ptq/
python3 quantize_quark.py --model_dir meta-llama/Llama-3.3-70B-Instruct \
                          --quant_scheme w_mxfp4_a_mxfp4 \
                          --group_size 32 \
                          --kv_cache_dtype fp8 \
                          --num_calib_data 128 \
                          --multi_gpu \
                          --quant_algo autosmoothquant 
                          --model_export hf_format \
                          --output_dir amd/Llama-3.3-70B-Instruct-WMXFP4-AMXFP4-KVFP8-Scale-UINT8-ASQ

Deployment

Use with vLLM

This model can be deployed efficiently using the vLLM backend.

Evaluation

The model was evaluated on MMLU and GSM8K_COT. Evaluation was conducted using the framework lm-evaluation-harness and the vLLM engine.

Accuracy

Benchmark Llama-3.3-70B-Instruct Llama-3.3-70B-Instruct-MXFP4(this model) Recovery
MMLU (5-shot) 83.36 81.43 97.68%
GSM8K_COT (8-shot, strict-match) 94.54 94.24 99.68%

Reproduction

The results were obtained using the following commands:

MMLU

lm_eval \
    --model vllm \
    --model_args pretrained=amd/Llama-3.3-70B-Instruct-WMXFP4-AMXFP4-KVFP8-Scale-UINT8-ASQ,dtype=auto,max_gen_toks=10,add_bos_token=True,tensor_parallel_size=1,gpu_memory_utilization=0.8,max_model_len=4096,kv_cache_dtype=fp8, \
    --tasks mmlu_llama \
    --apply_chat_template \
    --fewshot_as_multiturn \
    --num_fewshot 5 \
    --batch_size 32 \
    --device cuda

GSM8K_COT

lm_eval \
    --model_args pretrained=amd/Llama-3.3-70B-Instruct-WMXFP4-AMXFP4-KVFP8-Scale-UINT8-ASQ,dtype=auto,add_bos_token=True,tensor_parallel_size=1,gpu_memory_utilization=0.8,max_model_len=4096,kv_cache_dtype=fp8, \
    --model vllm \
    --tasks gsm8k_llama \
    --apply_chat_template \
    --fewshot_as_multiturn \
    --num_fewshot 8 \
    --batch_size 64 \
    --device cuda 

License

Modifications Copyright(c) 2025 Advanced Micro Devices, Inc. All rights reserved.

Downloads last month
305
Safetensors
Model size
38.5B params
Tensor type
BF16
·
U8
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for amd/Llama-3.3-70B-Instruct-MXFP4-Preview

Quantized
(127)
this model

Collection including amd/Llama-3.3-70B-Instruct-MXFP4-Preview