metadata
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: swin-base-patch4-window7-224-in22k-finetuned-brain-tumor-skullStrippded
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.9537366548042705
swin-base-patch4-window7-224-in22k-finetuned-brain-tumor-skullStrippded
This model is a fine-tuned version of microsoft/swin-base-patch4-window7-224-in22k on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.1308
- Accuracy: 0.9537
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 512
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
1.1427 | 1.0 | 11 | 0.5408 | 0.8562 |
0.3939 | 2.0 | 22 | 0.2092 | 0.9295 |
0.2291 | 3.0 | 33 | 0.1556 | 0.9445 |
0.1439 | 4.0 | 44 | 0.1308 | 0.9537 |
0.1298 | 5.0 | 55 | 0.1307 | 0.9516 |
Framework versions
- Transformers 4.27.4
- Pytorch 2.0.0+cu117
- Datasets 2.11.0
- Tokenizers 0.13.3