See axolotl config
axolotl version: 0.10.0
# base_model: mistralai/Mistral-Nemo-Base-2407
base_model: kakaocorp/kanana-1.5-2.1b-instruct-2505
# Enable to use mistral-common tokenizer
# tokenizer_use_mistral_common: true
# Automatically upload checkpoint and final model to HF
# hub_model_id: username/custom_model_name
load_in_8bit: false
load_in_4bit: false
# datasets:
# - path: fozziethebeat/alpaca_messages_2k_test
# type: chat_template
datasets:
- path: train.jsonl
type: chat_template
dataset_prepared_path: preprocess
val_set_size: 0.01
output_dir: ./outputs
dataloader_num_workers: 56
adapter:
# adapter: lora
lora_model_dir:
# lora_r: 32
# lora_alpha: 16
# lora_dropout: 0.05
# lora_target_linear: true
# lora_target_modules:
# - gate_proj
# - down_proj
# - up_proj
# - q_proj
# - v_proj
# - k_proj
# - o_proj
# lora_mlp_kernel: true
# lora_qkv_kernel: true
# lora_o_kernel: true
sequence_len: 8192
sample_packing: false
eval_sample_packing: false
pad_to_sequence_len: false
plugins:
- axolotl.integrations.liger.LigerPlugin
liger_rope: true
liger_rms_norm: true
liger_swiglu: true
liger_fused_linear_cross_entropy: true
wandb_project: fastcampus
wandb_entity:
wandb_watch:
wandb_name: fc-proj1-test01
wandb_log_model:
hub_model_id: amphora/fc-proj1-test01
gradient_accumulation_steps: 4
micro_batch_size: 16
num_epochs: 3
optimizer: adamw_torch_fused
# optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 2e-5
bf16: auto
tf32: false
# torch_compile: auto
# torch_compile_backend: inductor
gradient_checkpointing:
resume_from_checkpoint:
logging_steps: 1
flash_attention: true
# flash_attn_rms_norm: true
# flash_attn_cross_entropy: true
# flash_attn_fuse_qkv: true
flash_attn_fuse_mlp: true
warmup_ratio: 0.05
# warmup_steps: 10
weight_decay: 0.01
evals_per_epoch: 0
saves_per_epoch: 1
# deepspeed: deepspeed_configs/zero3_bf16.json
# fsdp:
# # - shard_grad_ops
# - full_shard
# - auto_wrap
# fsdp_config:
# fsdp_state_dict_type: FULL_STATE_DICT
# fsdp_transformer_layer_cls_to_wrap: LlamaDecoderLayer
# fsdp_activation_checkpointing: true
fsdp:
# - shard_grad_ops
- full_shard
- auto_wrap
fsdp_config:
fsdp_backward_prefetch: BACKWARD_PRE
fsdp_state_dict_type: SHARDED_STATE_DICT
fsdp_transformer_layer_cls_to_wrap: LlamaDecoderLayer
fsdp_activation_checkpointing: true
fc-proj1-test01
This model is a fine-tuned version of kakaocorp/kanana-1.5-2.1b-instruct-2505 on the train.jsonl dataset.
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- total_eval_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 43
- training_steps: 860
Training results
Framework versions
- Transformers 4.52.3
- Pytorch 2.6.0+cu124
- Datasets 3.6.0
- Tokenizers 0.21.2
- Downloads last month
- 34
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for amphora/fc-proj1-test01
Base model
kakaocorp/kanana-1.5-2.1b-instruct-2505