amupd commited on
Commit
fdfdc1c
·
verified ·
1 Parent(s): e896894

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +53 -3
README.md CHANGED
@@ -1,3 +1,53 @@
1
- ---
2
- license: mit
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ ---
4
+
5
+
6
+ ## SparQLe – Speech Queries to Text via Instruction‑Tuned LLM ⚡
7
+
8
+ **What it does:**
9
+ SparQLe (Speech Routing to Query LLMs) enables direct speech-to-text understanding by aligning self‑supervised speech representations (e.g., HuBERT-like features) with instruction‑tuned Large Language Models (LLMs). This is achieved using a lightweight *modality adapter*, bridging the modalities without retraining the whole LLM. ([Moonlight][1])
10
+
11
+ **Key strengths:**
12
+
13
+ * **Preserves semantic content** of spoken input in the produced text ([arXiv][2])
14
+ * **Efficiently leverages frozen SSL models**, avoiding heavy ASR backbones like Whisper ([arXiv][3])
15
+ * **Modular design** with a query‑former (Q‑former) adapter and LLM backend ([GitHub][4])
16
+
17
+ **Architecture:**
18
+
19
+ 1. **Speech encoder** (SSL) transforms raw input into latent features.
20
+ 2. **Modality adapter / Q‑former** aligns these with the LLM’s text embedding space.
21
+ 3. **Instruction‑tuned LLM** processes the adapted input to generate semantic text.
22
+
23
+
24
+ ## Citation
25
+
26
+ If you use SparQLe in your research, please cite:
27
+
28
+ ```bibtex
29
+ @misc{djanibekov2025sparqlespeechqueriestext,
30
+ title={SparQLe: Speech Queries to Text Translation Through LLMs},
31
+ author={Amirbek Djanibekov and Hanan Aldarmaki},
32
+ year={2025},
33
+ eprint={2502.09284},
34
+ archivePrefix={arXiv},
35
+ primaryClass={cs.CL},
36
+ url={https://arxiv.org/abs/2502.09284},
37
+ }
38
+ ```
39
+
40
+ 📄 Read the full paper on arXiv: [https://arxiv.org/abs/2502.09284](https://arxiv.org/abs/2502.09284)
41
+
42
+ ---
43
+
44
+ ## License
45
+
46
+ This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.
47
+
48
+ ---
49
+
50
+ ## Acknowledgments
51
+
52
+ - This work builds upon [fairseq](https://github.com/facebookresearch/fairseq) 💙
53
+ - The Qformer architecture is inspired by [BLIP-2](https://github.com/salesforce/BLIP-2) ✨