Usage with PEFT
This model uses LoRA fine-tuning. To use it:
from transformers import AutoModelForSequenceClassification, AutoTokenizer
from peft import PeftModel
# Load base model
base_model = AutoModelForSequenceClassification.from_pretrained("google-bert/bert-base-uncased", num_labels=2)
tokenizer = AutoTokenizer.from_pretrained("google-bert/bert-base-uncased")
# Load LoRA weights
model = PeftModel.from_pretrained(base_model, "anjali-mudgal/prompt_guardrail_bert-LoRA")
lora_config = LoraConfig(
r=8,
lora_alpha=32,
lora_dropout=0.15,
bias="all",
task_type="SEQ_CLS",
target_modules=["query", "key", "value", "output.dense"]
)
### Framework versions
- PEFT 0.14.0
- Downloads last month
- 4
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for anjali-mudgal/prompt_guardrail_bert-LoRA-r8
Base model
google-bert/bert-base-uncased