See axolotl config
axolotl version: 0.12.0.dev0
adapter: lora
base_model: Qwen/Qwen3-8B-Base
bf16: true
chat_template: llama3
cosine_min_lr_ratio: 0.3
dataloader_num_workers: 12
dataset_prepared_path: null
datasets:
- data_files:
- c732d2b1-46df-4ed8-83ee-7525f648965f_train_data.json
ds_type: json
format: custom
path: /workspace/axolotl/data
type:
field_input: None
field_instruction: instruct
field_output: output
field_system: None
format: None
no_input_format: None
system_format: '{system}'
system_prompt: None
ddp: true
debug: null
deepspeed: null
device_map: cuda
early_stopping_patience: null
eval_max_new_tokens: 128
eval_steps: null
eval_table_size: null
evals_per_epoch: null
flash_attention: false
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 1
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: false
group_by_length: true
hub_model_id: null
hub_private_repo: false
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 4.0e-05
liger_fused_linear_cross_entropy: true
liger_glu_activation: true
liger_layer_norm: true
liger_rms_norm: true
liger_rope: true
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: null
lora_alpha: 64
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 32
lora_target_linear: true
loraplus_lr_embedding: 1.0e-06
loraplus_lr_ratio: 16
lr_scheduler: cosine
max_grad_norm: 1
max_steps: 20
micro_batch_size: 28
mlflow_experiment_name: /workspace/axolotl/data/c732d2b1-46df-4ed8-83ee-7525f648965f_train_data.json
model_card: false
model_type: AutoModelForCausalLM
num_epochs: 200
optimizer: adamw_bnb_8bit
output_dir: /app/checkpoints/c732d2b1-46df-4ed8-83ee-7525f648965f/20250731_170119
pad_to_sequence_len: true
plugins:
- axolotl.integrations.liger.LigerPlugin
push_every_save: true
push_to_hub: true
resume_from_checkpoint: null
rl: null
s2_attention: null
sample_packing: true
save_steps: 100
save_strategy: steps
save_total_limit: 1
saves_per_epoch: 0
sequence_len: 1024
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trl: null
trust_remote_code: false
use_liger: true
val_set_size: 0.0
wandb_mode: offline
wandb_name: c732d2b1-46df-4ed8-83ee-7525f648965f_20250731_170119
wandb_project: Gradients-On-Demand
wandb_run: apriasmoro
wandb_runid: c732d2b1-46df-4ed8-83ee-7525f648965f_20250731_170119
warmup_steps: 20
weight_decay: 0
xformers_attention: null
app/checkpoints/c732d2b1-46df-4ed8-83ee-7525f648965f/20250731_170119
This model was trained from scratch on the None dataset.
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 4e-05
- train_batch_size: 28
- eval_batch_size: 28
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 20
- training_steps: 20
Training results
Framework versions
- PEFT 0.16.0
- Transformers 4.54.0
- Pytorch 2.7.1+cu128
- Datasets 4.0.0
- Tokenizers 0.21.2
- Downloads last month
- 1
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for apriasmoro/20250731_170119
Base model
Qwen/Qwen3-8B-Base