apriasmoro's picture
End of training
d9a526c verified
metadata
library_name: peft
license: apache-2.0
base_model: Qwen/Qwen3-8B-Base
tags:
  - axolotl
  - base_model:adapter:Qwen/Qwen3-8B-Base
  - lora
  - transformers
pipeline_tag: text-generation
model-index:
  - name: c428e29d-c504-4ae2-b135-45caf3dd7e74
    results: []

Built with Axolotl

See axolotl config

axolotl version: 0.12.0.dev0

adapter: lora
base_model: Qwen/Qwen3-8B-Base
bf16: true
chat_template: llama3
dataloader_num_workers: 12
dataset_prepared_path: null
datasets:
- data_files:
  - 45c346a7c1e52747_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/
  type:
    field_input: None
    field_instruction: instruct
    field_output: output
    field_system: None
    format: None
    no_input_format: None
    system_format: '{system}'
    system_prompt: None
ddp: true
debug: null
deepspeed: null
device_map: cuda
early_stopping_patience: null
eval_max_new_tokens: 128
eval_steps: null
eval_table_size: null
evals_per_epoch: null
flash_attention: true
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 1
gradient_checkpointing: true
gradient_checkpointing_kwargs:
  use_reentrant: false
group_by_length: true
hub_model_id: apriasmoro/c428e29d-c504-4ae2-b135-45caf3dd7e74
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.00015
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: null
lora_alpha: 64
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 32
lora_target_linear: true
loraplus_lr_embedding: 1.0e-06
loraplus_lr_ratio: 16
lr_scheduler: cosine
max_grad_norm: 1
max_steps: 20
micro_batch_size: 24
mlflow_experiment_name: /tmp/45c346a7c1e52747_train_data.json
model_card: false
model_type: AutoModelForCausalLM
num_epochs: 200
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
rl: null
s2_attention: null
sample_packing: true
save_steps: 100
save_total_limit: 10
saves_per_epoch: 0
sequence_len: 1024
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trl: null
trust_remote_code: false
val_set_size: 0.0
wandb_name: c732d2b5-46df-4ed8-83ee-7525f648965f
wandb_project: Gradients-On-Demand
wandb_run: apriasmoro
wandb_runid: c732d2b5-46df-4ed8-83ee-7525f648965f
warmup_steps: 200
weight_decay: 0
xformers_attention: null

c428e29d-c504-4ae2-b135-45caf3dd7e74

This model is a fine-tuned version of Qwen/Qwen3-8B-Base on an unknown dataset.

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.00015
  • train_batch_size: 24
  • eval_batch_size: 24
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 200
  • training_steps: 20

Training results

Framework versions

  • PEFT 0.16.0
  • Transformers 4.53.2
  • Pytorch 2.7.1+cu128
  • Datasets 4.0.0
  • Tokenizers 0.21.2