apwic's picture
End of training
ec855a0 verified
metadata
language:
  - id
license: mit
base_model: indolem/indobert-base-uncased
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: sentiment-lora-r2a0d0.1-0
    results: []

sentiment-lora-r2a0d0.1-0

This model is a fine-tuned version of indolem/indobert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3608
  • Accuracy: 0.8471
  • Precision: 0.8138
  • Recall: 0.8243
  • F1: 0.8187

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 30
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20.0

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
0.5634 1.0 122 0.5108 0.7193 0.6572 0.6489 0.6524
0.5081 2.0 244 0.5049 0.7218 0.6829 0.7082 0.6888
0.4924 3.0 366 0.4667 0.7494 0.6977 0.6977 0.6977
0.4698 4.0 488 0.4392 0.7794 0.7349 0.7114 0.7207
0.4519 5.0 610 0.4548 0.7469 0.7169 0.7534 0.7226
0.4356 6.0 732 0.4111 0.8145 0.7770 0.7713 0.7740
0.421 7.0 854 0.4101 0.7945 0.7538 0.7721 0.7612
0.4039 8.0 976 0.3829 0.8296 0.7949 0.7919 0.7934
0.3887 9.0 1098 0.3800 0.8321 0.7972 0.7987 0.7979
0.3797 10.0 1220 0.3768 0.8371 0.8044 0.7997 0.8020
0.368 11.0 1342 0.3842 0.8221 0.7846 0.8016 0.7918
0.3598 12.0 1464 0.3778 0.8271 0.7902 0.8051 0.7968
0.3548 13.0 1586 0.3624 0.8471 0.8167 0.8118 0.8142
0.3469 14.0 1708 0.3637 0.8446 0.8120 0.8151 0.8135
0.3431 15.0 1830 0.3685 0.8396 0.8049 0.8165 0.8102
0.3275 16.0 1952 0.3664 0.8371 0.8017 0.8172 0.8086
0.3288 17.0 2074 0.3590 0.8396 0.8055 0.8115 0.8084
0.3335 18.0 2196 0.3607 0.8471 0.8138 0.8243 0.8187
0.3239 19.0 2318 0.3613 0.8446 0.8107 0.8226 0.8161
0.327 20.0 2440 0.3608 0.8471 0.8138 0.8243 0.8187

Framework versions

  • Transformers 4.39.3
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.15.2