metadata
language:
- id
license: mit
base_model: indolem/indobert-base-uncased
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: sentiment-lora-r2a2d0.15-0
results: []
sentiment-lora-r2a2d0.15-0
This model is a fine-tuned version of indolem/indobert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.3672
- Accuracy: 0.8321
- Precision: 0.7961
- Recall: 0.8087
- F1: 0.8018
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 30
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20.0
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
---|---|---|---|---|---|---|---|
0.563 | 1.0 | 122 | 0.5138 | 0.7243 | 0.6636 | 0.6549 | 0.6586 |
0.509 | 2.0 | 244 | 0.5057 | 0.7168 | 0.6763 | 0.6996 | 0.6820 |
0.4924 | 3.0 | 366 | 0.4708 | 0.7393 | 0.6877 | 0.6931 | 0.6901 |
0.468 | 4.0 | 488 | 0.4379 | 0.7845 | 0.7412 | 0.7200 | 0.7286 |
0.4495 | 5.0 | 610 | 0.4466 | 0.7594 | 0.7233 | 0.7548 | 0.7313 |
0.4334 | 6.0 | 732 | 0.4041 | 0.8271 | 0.7927 | 0.7851 | 0.7887 |
0.415 | 7.0 | 854 | 0.4057 | 0.7995 | 0.7590 | 0.7756 | 0.7660 |
0.3974 | 8.0 | 976 | 0.3852 | 0.8321 | 0.7982 | 0.7937 | 0.7959 |
0.3849 | 9.0 | 1098 | 0.3829 | 0.8246 | 0.7880 | 0.7909 | 0.7894 |
0.3771 | 10.0 | 1220 | 0.3786 | 0.8396 | 0.8065 | 0.8065 | 0.8065 |
0.3633 | 11.0 | 1342 | 0.3843 | 0.8296 | 0.7931 | 0.8069 | 0.7993 |
0.3591 | 12.0 | 1464 | 0.3833 | 0.8296 | 0.7931 | 0.8069 | 0.7993 |
0.354 | 13.0 | 1586 | 0.3705 | 0.8396 | 0.8065 | 0.8065 | 0.8065 |
0.3451 | 14.0 | 1708 | 0.3709 | 0.8371 | 0.8028 | 0.8072 | 0.8049 |
0.3403 | 15.0 | 1830 | 0.3733 | 0.8321 | 0.7960 | 0.8112 | 0.8027 |
0.3282 | 16.0 | 1952 | 0.3715 | 0.8346 | 0.7988 | 0.8155 | 0.8061 |
0.3286 | 17.0 | 2074 | 0.3664 | 0.8321 | 0.7965 | 0.8037 | 0.7999 |
0.3348 | 18.0 | 2196 | 0.3670 | 0.8271 | 0.7904 | 0.8001 | 0.7949 |
0.325 | 19.0 | 2318 | 0.3669 | 0.8321 | 0.7961 | 0.8087 | 0.8018 |
0.3266 | 20.0 | 2440 | 0.3672 | 0.8321 | 0.7961 | 0.8087 | 0.8018 |
Framework versions
- Transformers 4.39.3
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.15.2