apwic's picture
End of training
762274e verified
metadata
language:
  - id
license: mit
base_model: indolem/indobert-base-uncased
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: sentiment-lora-r2a2d0.15-0
    results: []

sentiment-lora-r2a2d0.15-0

This model is a fine-tuned version of indolem/indobert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3672
  • Accuracy: 0.8321
  • Precision: 0.7961
  • Recall: 0.8087
  • F1: 0.8018

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 30
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20.0

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
0.563 1.0 122 0.5138 0.7243 0.6636 0.6549 0.6586
0.509 2.0 244 0.5057 0.7168 0.6763 0.6996 0.6820
0.4924 3.0 366 0.4708 0.7393 0.6877 0.6931 0.6901
0.468 4.0 488 0.4379 0.7845 0.7412 0.7200 0.7286
0.4495 5.0 610 0.4466 0.7594 0.7233 0.7548 0.7313
0.4334 6.0 732 0.4041 0.8271 0.7927 0.7851 0.7887
0.415 7.0 854 0.4057 0.7995 0.7590 0.7756 0.7660
0.3974 8.0 976 0.3852 0.8321 0.7982 0.7937 0.7959
0.3849 9.0 1098 0.3829 0.8246 0.7880 0.7909 0.7894
0.3771 10.0 1220 0.3786 0.8396 0.8065 0.8065 0.8065
0.3633 11.0 1342 0.3843 0.8296 0.7931 0.8069 0.7993
0.3591 12.0 1464 0.3833 0.8296 0.7931 0.8069 0.7993
0.354 13.0 1586 0.3705 0.8396 0.8065 0.8065 0.8065
0.3451 14.0 1708 0.3709 0.8371 0.8028 0.8072 0.8049
0.3403 15.0 1830 0.3733 0.8321 0.7960 0.8112 0.8027
0.3282 16.0 1952 0.3715 0.8346 0.7988 0.8155 0.8061
0.3286 17.0 2074 0.3664 0.8321 0.7965 0.8037 0.7999
0.3348 18.0 2196 0.3670 0.8271 0.7904 0.8001 0.7949
0.325 19.0 2318 0.3669 0.8321 0.7961 0.8087 0.8018
0.3266 20.0 2440 0.3672 0.8321 0.7961 0.8087 0.8018

Framework versions

  • Transformers 4.39.3
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.15.2