aquif-3
Collection
Our most advanced models for 2025.
•
6 items
•
Updated
A high-performance 3.2B parameter language model based on Meta's Llama 3.2 architecture, optimized for efficiency while maintaining strong capabilities across multiple domains including general knowledge, science, mathematics, coding, and multilingual tasks.
Base Model: meta-llama/Llama-3.2-3B
Architecture: Llama
Parameter Count: 3.2 billion parameters
Languages: English, German, Italian, Portuguese, French, Hindi, Spanish, Thai, Chinese, Japanese
Metric | aquif-3-mini (3.2B) | Llama 3.2 (3.2B) | Qwen3 (4B) | Gemma 3n E4B (8.4B) | SmolLM3 (3.1B) | Phi-4 mini (3.8B) | Granite 3.3 (2.5B) |
---|---|---|---|---|---|---|---|
MMLU (General Knowledge) | 67.5 | 63.4 | 67.0 | 64.9 | 59.5 | 67.3 | 55.9 |
GPQA Diamond (Science) | 36.1 | 29.4 | 40.7 | 29.6 | 35.7 | 36.9 | 25.3 |
AIME 2025 (Competition Math) | 9.6 | 0.3 | 17.1 | 11.6 | 9.3 | 10.0 | 2.5 |
LiveCodeBench (Coding) | 15.4 | 8.3 | 23.3 | 14.6 | 15.2 | 12.6 | 9.4 |
Global MMLU (Multilingual) | 58.0 | 46.8 | 65.1 | 53.1 | 53.5 | 49.3 | 49.7 |
IFEval (Instruction Following) | 78.9 | 71.6 | 68.9 | 56.8 | 76.7 | 70.1 | 65.8 |
BFCL Simple (Tool Calling) | 92.3 | 78.6 | 81.3 | 71.8 | 88.8 | 70.3 | 72.2 |
from transformers import AutoTokenizer, AutoModelForCausalLM
model_name = "aquiffoo/aquif-3-mini"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
# Generate text
inputs = tokenizer("Explain quantum computing:", return_tensors="pt")
outputs = model.generate(**inputs, max_length=200, temperature=0.7)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(response)
Apache 2.0
We gratefully acknowledge:
For questions, issues, or collaboration opportunities, please reach out through the Hugging Face model page.