|
--- |
|
language: |
|
- hy |
|
license: apache-2.0 |
|
tags: |
|
- automatic-speech-recognition |
|
- generated_from_trainer |
|
- hf-asr-leaderboard |
|
- hy |
|
- mozilla-foundation/common_voice_8_0 |
|
- robust-speech-event |
|
datasets: |
|
- common_voice |
|
model-index: |
|
- name: wav2vec2-xls-r-1b-hy-cv |
|
results: |
|
- task: |
|
type: automatic-speech-recognition |
|
name: Speech Recognition |
|
dataset: |
|
type: mozilla-foundation/common_voice_8_0 |
|
name: Common Voice hy-AM |
|
args: hy-AM |
|
metrics: |
|
- type: wer |
|
value: 10.811865729898516 |
|
name: WER LM |
|
- type: cer |
|
value: 2.2205361659079412 |
|
name: CER LM |
|
- task: |
|
name: Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: Robust Speech Event - Dev Data |
|
type: speech-recognition-community-v2/dev_data |
|
args: hy |
|
metrics: |
|
- name: Test WER |
|
type: wer |
|
value: 18.219363037089988 |
|
- name: Test CER |
|
type: cer |
|
value: 7.075988867335752 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# |
|
|
|
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the /WORKSPACE/DATA/HY/NOIZY_STUDENT_4/ - NA dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1693 |
|
- Wer: 0.2373 |
|
- Cer: 0.0429 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 64 |
|
- seed: 842 |
|
- gradient_accumulation_steps: 8 |
|
- total_train_batch_size: 128 |
|
- optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- training_steps: 5000 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:| |
|
| 1.255 | 7.24 | 500 | 0.2978 | 0.4294 | 0.0758 | |
|
| 1.0058 | 14.49 | 1000 | 0.1883 | 0.2838 | 0.0483 | |
|
| 0.9371 | 21.73 | 1500 | 0.1813 | 0.2627 | 0.0457 | |
|
| 0.8999 | 28.98 | 2000 | 0.1693 | 0.2373 | 0.0429 | |
|
| 0.8814 | 36.23 | 2500 | 0.1760 | 0.2420 | 0.0435 | |
|
| 0.8364 | 43.47 | 3000 | 0.1765 | 0.2416 | 0.0419 | |
|
| 0.8019 | 50.72 | 3500 | 0.1758 | 0.2311 | 0.0398 | |
|
| 0.7665 | 57.96 | 4000 | 0.1745 | 0.2240 | 0.0399 | |
|
| 0.7376 | 65.22 | 4500 | 0.1717 | 0.2190 | 0.0385 | |
|
| 0.716 | 72.46 | 5000 | 0.1700 | 0.2147 | 0.0382 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.17.0.dev0 |
|
- Pytorch 1.10.2 |
|
- Datasets 1.18.4.dev0 |
|
- Tokenizers 0.11.0 |
|
|