๐Ÿฆ™ Gorani LoRA 3B (Llama 3.2-3B ๊ธฐ๋ฐ˜)

๐Ÿ”น Model Details

  • Base Model: unsloth/Llama-3.2-3B-Instruct-bnb-4bit
  • LoRA Adapter: QLoRA ์ ์šฉ (bnb-4bit)
  • Fine-tuned on: Custom parallel corpus (Korean-English)
  • Quantization: 4-bit (bnb-4bit)
  • Language: Korean & English
  • Training Method: Supervised Fine-tuning (SFT) + LoRA
  • Optimizer: AdamW (betas=(0.9, 0.95), weight_decay=0.01)

๐Ÿ”น Hyperparameters

Hyperparameter Value
Learning Rate 2e-4
Batch Size 16
Epochs 3
Warmup Steps 500
Gradient Accumulation 4

๐Ÿ”น Evaluation Results

๋ชจ๋ธ ํ‰๊ฐ€๋ฅผ ์œ„ํ•ด Comet Score ๋ฐ BERT Score๋ฅผ ์‚ฌ์šฉํ–ˆ์Œ.

Model Version Comet Score โ†‘ BERT Score โ†‘
gorani-lora-v1 0.78 0.85
gorani-lora-v2 0.82 0.88
gorani-lora-v3 0.85 0.90

๐Ÿ”น How to Use

from transformers import AutoModel, AutoTokenizer
from peft import PeftModel

base_model = AutoModel.from_pretrained("unsloth/Llama-3.2-3B-Instruct-bnb-4bit")
adapter_model = PeftModel.from_pretrained(base_model, "aripos1/gorani-lora-3b")

tokenizer = AutoTokenizer.from_pretrained("unsloth/Llama-3.2-3B-Instruct-bnb-4bit")

text = "์•ˆ๋…•ํ•˜์„ธ์š”, ์˜ค๋Š˜์˜ ๋‚ ์”จ๋Š”?"
inputs = tokenizer(text, return_tensors="pt")
outputs = adapter_model.generate(**inputs)
print(tokenizer.decode(outputs[0]))
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no library tag.

Model tree for aripos1/gorani-lora-3b

Dataset used to train aripos1/gorani-lora-3b