๐ฆ Gorani LoRA 3B (Llama 3.2-3B ๊ธฐ๋ฐ)
๐น Model Details
- Base Model:
unsloth/Llama-3.2-3B-Instruct-bnb-4bit
- LoRA Adapter: QLoRA ์ ์ฉ (bnb-4bit)
- Fine-tuned on: Custom parallel corpus (Korean-English)
- Quantization: 4-bit (bnb-4bit)
- Language: Korean & English
- Training Method: Supervised Fine-tuning (SFT) + LoRA
- Optimizer: AdamW (betas=(0.9, 0.95), weight_decay=0.01)
๐น Hyperparameters
Hyperparameter | Value |
---|---|
Learning Rate | 2e-4 |
Batch Size | 16 |
Epochs | 3 |
Warmup Steps | 500 |
Gradient Accumulation | 4 |
๐น Evaluation Results
๋ชจ๋ธ ํ๊ฐ๋ฅผ ์ํด Comet Score ๋ฐ BERT Score๋ฅผ ์ฌ์ฉํ์.
Model Version | Comet Score โ | BERT Score โ |
---|---|---|
gorani-lora-v1 |
0.78 | 0.85 |
gorani-lora-v2 |
0.82 | 0.88 |
gorani-lora-v3 |
0.85 | 0.90 |
๐น How to Use
from transformers import AutoModel, AutoTokenizer
from peft import PeftModel
base_model = AutoModel.from_pretrained("unsloth/Llama-3.2-3B-Instruct-bnb-4bit")
adapter_model = PeftModel.from_pretrained(base_model, "aripos1/gorani-lora-3b")
tokenizer = AutoTokenizer.from_pretrained("unsloth/Llama-3.2-3B-Instruct-bnb-4bit")
text = "์๋
ํ์ธ์, ์ค๋์ ๋ ์จ๋?"
inputs = tokenizer(text, return_tensors="pt")
outputs = adapter_model.generate(**inputs)
print(tokenizer.decode(outputs[0]))
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API:
The model has no library tag.
Model tree for aripos1/gorani-lora-3b
Base model
meta-llama/Llama-3.2-3B-Instruct
Quantized
unsloth/Llama-3.2-3B-Instruct-bnb-4bit