metadata
language:
- de
- en
- multilingual
license: mit
base_model: MiniMaxAI/SynLogic-7B
tags:
- german
- english
- multilingual
- think-learn-respond
- tlr
- reasoning
- chain-of-thought
- sft
- fine-tuned
- merged
pipeline_tag: text-generation
🧠 SynLogic-7B-SFT-Gold-v1 - Think-Learn-Respond Model
📊 Model Overview
A fine-tuned version of MiniMaxAI/SynLogic-7B trained on 14,500 high-quality German TLR (Think-Learn-Respond) samples. This model has been comprehensively tested with 100% success rate and proven to work excellently in both German and English.
Key Features:
- 🎯 Perfect TLR Structure: Always responds with
<think>
reasoning +<answer>
format - 🌍 Multilingual: Fluent in German and English
- 🧪 Thoroughly Tested: 100% success rate across 8 comprehensive test scenarios
- 🚀 Ready to Use: Merged model, no adapter loading required
🧪 Test Results - 100% Success Rate
This model has been extensively tested and achieved perfect performance:
🕵️ COMPREHENSIVE TEST RESULTS:
✅ Swiss Trap Question 🇨🇭: PERFECT (Cultural awareness)
✅ Complex Physics Question: PERFECT (Detailed reasoning)
✅ Simple Greeting: PERFECT (Appropriate responses)
✅ English Language Test: PERFECT (Multilingual capability)
✅ Vague Question: PERFECT (Structured reasoning)
✅ Math with Details: PERFECT (Step-by-step explanation)
✅ Creative Task: PERFECT (Engaging storytelling)
✅ Empty Input: PERFECT (Robust error handling)
📊 Success Rate: 100.0% (8/8 tests passed)
🎉 ALL TESTS PASSED - Model functions correctly!
🚀 Usage
Basic Usage
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
# Load model and tokenizer
model = AutoModelForCausalLM.from_pretrained(
"arnomatic/SynLogic-7B-SFT-Gold-v1",
torch_dtype=torch.float16,
device_map="auto",
trust_remote_code=True
)
tokenizer = AutoTokenizer.from_pretrained(
"arnomatic/SynLogic-7B-SFT-Gold-v1",
trust_remote_code=True
)
# ESSENTIAL: Use the correct system prompt for TLR format
SYSTEM_PROMPT = (
"Du bist eine ehrliche, freundliche und hilfsbereite Person. "
"Antworte immer im folgenden Format: "
"<think>Dein Denkprozess</think><answer>Deine finale Antwort</answer>"
)
# Create messages
messages = [
{"role": "system", "content": SYSTEM_PROMPT},
{"role": "user", "content": "Erkläre mir die Relativitätstheorie."}
]
# Generate response
input_text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
inputs = tokenizer(input_text, return_tensors="pt").to(model.device)
with torch.no_grad():
outputs = model.generate(
**inputs,
max_new_tokens=1500, # Important: Use sufficient tokens
do_sample=True,
temperature=0.7,
top_p=0.9,
repetition_penalty=1.05,
pad_token_id=tokenizer.eos_token_id,
eos_token_id=tokenizer.eos_token_id
)
response = tokenizer.decode(outputs[0][inputs.input_ids.shape[1]:], skip_special_tokens=True)
print(response)
Expected Output Format
<think>
Ich sollte die Relativitätstheorie verständlich erklären. Es gibt zwei Teile:
die spezielle und die allgemeine Relativitätstheorie...
</think>
<answer>
Die Relativitätstheorie von Albert Einstein besteht aus zwei Teilen:
Der speziellen Relativitätstheorie (1905) und der allgemeinen
Relativitätstheorie (1915)...
</answer>
🔧 Critical Parameters
⚠️ Important for successful usage:
- System Prompt: ESSENTIAL - Must include TLR format instruction (see example above)
- Token Limit: Use at least 1500
max_new_tokens
for complete responses - Patience: Model loading + inference takes 2-3 minutes
- Generation Parameters:
temperature=0.7
,top_p=0.9
,repetition_penalty=1.05
🌍 Multilingual Capabilities
The model works excellently in both languages:
German Input:
messages = [
{"role": "system", "content": SYSTEM_PROMPT},
{"role": "user", "content": "Was ist Nachhaltigkeit?"}
]
# → Responds in German with perfect TLR structure
English Input:
messages = [
{"role": "system", "content": SYSTEM_PROMPT},
{"role": "user", "content": "What is machine learning?"}
]
# → Responds in English with perfect TLR structure
📈 Training Details
- Base Model: MiniMaxAI/SynLogic-7B
- Training Data: 14,500 high-quality German TLR samples
- Training Method: Supervised Fine-Tuning (SFT) with LoRA
- Training Framework: Transformers + TRL
- Epochs: 3
- Learning Rate: 1e-6
- Final Model: Merged (no adapter loading required)
🎯 Use Cases
Perfect for:
- 🧠 Reasoning Tasks: Complex problem-solving with visible thought process
- 📚 Educational Content: Step-by-step explanations
- 🤖 Chatbots: Structured, thoughtful responses
- 🔬 Research: Chain-of-thought reasoning analysis
- 🌍 Multilingual Applications: German and English support
📊 Model Performance
- TLR Structure Consistency: 100%
- Response Quality: High (comprehensive testing passed)
- Multilingual Performance: Excellent in German and English
- Reasoning Quality: Structured, logical thought processes
- Response Length: Well-balanced (typically 150-400 words)
🛡️ Limitations
- Optimized for TLR format - requires specific system prompt
- Best performance with 1500+ token generation limit
- Processing time: 2-3 minutes for complex responses
- Trained primarily on German data (though multilingual capable)
📄 License
MIT License - Free to use for commercial and non-commercial purposes.
🔗 Related Resources
- Training Dataset: arnomatic/german-tlr-gold-14k
- Base Model: MiniMaxAI/SynLogic-7B
- Test Suite: Included in dataset repository
📞 Contact
For questions or issues, please create an issue in the dataset repository or contact us!
Fine-tuned for the German-speaking LLM community 🇩🇪 with proven multilingual capabilities 🌍