splade-co-condenser-marco trained on MS MARCO hard negatives with distillation
This is a SPLADE Sparse Encoder model finetuned from Luyu/co-condenser-marco on the msmarco-hard-negatives-cross-encoder-ms-marco-mini_lm-l-6-v2-scores dataset using the sentence-transformers library. It maps sentences & paragraphs to a 30522-dimensional sparse vector space and can be used for semantic search and sparse retrieval.
Model Details
Model Description
- Model Type: SPLADE Sparse Encoder
- Base model: Luyu/co-condenser-marco
- Maximum Sequence Length: 256 tokens
- Output Dimensionality: 30522 dimensions
- Similarity Function: Dot Product
- Training Dataset:
- msmarco-hard-negatives-cross-encoder-ms-marco-mini_lm-l-6-v2-scores
- Language: en
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Documentation: Sparse Encoder Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sparse Encoders on Hugging Face
Full Model Architecture
SparseEncoder(
(0): MLMTransformer({'max_seq_length': 256, 'do_lower_case': False, 'architecture': 'BertForMaskedLM'})
(1): SpladePooling({'pooling_strategy': 'max', 'activation_function': 'relu', 'word_embedding_dimension': 30522})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SparseEncoder
# Download from the 🤗 Hub
model = SparseEncoder("arthurbresnu/splade-co-condenser-marco-msmarco-margin-mse-1-bs_128-lr_2e-05-lq_0.1-ld_0.08")
# Run inference
queries = [
"skype how do i get video voice",
]
documents = [
'Speaker volume to adjust the sound. Slide the pointer up and down for volume, or select the speaker icon at the top of the volume control to mute your speaker. Select the Video button to add video to a Skype for Business call. Select the IM button to add instant messaging to a Skype for Business call.',
'To make a free voice or video call on Skype for Web, you need to download a plugin. You can do this when you first sign in, or wait for when you want to make or receive your first call. Installing the plugin should only take a few moments, as the plugin is just 13.6MB. Making a voice or video call is simple.',
'Century Dictionary and Cyclopedia. 1 n vogue The mode or fashion prevalent at any particular time; popular reception, repute, or estimation; common currency: now generally used in the phrase in vogue: as, a particular style of dress was then in. 2 n vogue General drift of ideas; rumor; report. ***.',
]
query_embeddings = model.encode_query(queries)
document_embeddings = model.encode_document(documents)
print(query_embeddings.shape, document_embeddings.shape)
# [1, 30522] [3, 30522]
# Get the similarity scores for the embeddings
similarities = model.similarity(query_embeddings, document_embeddings)
print(similarities)
# tensor([[14.1007, 17.3336, 0.0000]])
Evaluation
Metrics
Sparse Information Retrieval
- Datasets:
NanoMSMARCO
,NanoNFCorpus
,NanoNQ
,NanoClimateFEVER
,NanoDBPedia
,NanoFEVER
,NanoFiQA2018
,NanoHotpotQA
,NanoMSMARCO
,NanoNFCorpus
,NanoNQ
,NanoQuoraRetrieval
,NanoSCIDOCS
,NanoArguAna
,NanoSciFact
andNanoTouche2020
- Evaluated with
SparseInformationRetrievalEvaluator
Metric | NanoMSMARCO | NanoNFCorpus | NanoNQ | NanoClimateFEVER | NanoDBPedia | NanoFEVER | NanoFiQA2018 | NanoHotpotQA | NanoQuoraRetrieval | NanoSCIDOCS | NanoArguAna | NanoSciFact | NanoTouche2020 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
dot_accuracy@1 | 0.52 | 0.48 | 0.6 | 0.32 | 0.76 | 0.84 | 0.44 | 0.88 | 0.82 | 0.4 | 0.12 | 0.58 | 0.6939 |
dot_accuracy@3 | 0.74 | 0.6 | 0.7 | 0.4 | 0.88 | 0.96 | 0.56 | 0.92 | 0.88 | 0.64 | 0.44 | 0.7 | 0.9796 |
dot_accuracy@5 | 0.78 | 0.62 | 0.76 | 0.5 | 0.9 | 1.0 | 0.6 | 0.96 | 0.96 | 0.72 | 0.72 | 0.76 | 0.9796 |
dot_accuracy@10 | 0.84 | 0.66 | 0.88 | 0.64 | 0.92 | 1.0 | 0.7 | 1.0 | 1.0 | 0.84 | 0.82 | 0.82 | 1.0 |
dot_precision@1 | 0.52 | 0.48 | 0.6 | 0.32 | 0.76 | 0.84 | 0.44 | 0.88 | 0.82 | 0.4 | 0.12 | 0.58 | 0.6939 |
dot_precision@3 | 0.2467 | 0.4067 | 0.2333 | 0.1467 | 0.6467 | 0.3467 | 0.2533 | 0.48 | 0.3533 | 0.3267 | 0.1467 | 0.2467 | 0.6803 |
dot_precision@5 | 0.156 | 0.352 | 0.156 | 0.116 | 0.612 | 0.216 | 0.188 | 0.304 | 0.24 | 0.236 | 0.144 | 0.172 | 0.649 |
dot_precision@10 | 0.084 | 0.272 | 0.092 | 0.08 | 0.54 | 0.108 | 0.118 | 0.166 | 0.13 | 0.17 | 0.082 | 0.092 | 0.5327 |
dot_recall@1 | 0.52 | 0.0641 | 0.58 | 0.1567 | 0.0952 | 0.7967 | 0.2367 | 0.44 | 0.7207 | 0.0837 | 0.12 | 0.555 | 0.0482 |
dot_recall@3 | 0.74 | 0.0987 | 0.66 | 0.198 | 0.1886 | 0.9333 | 0.3458 | 0.72 | 0.8387 | 0.2017 | 0.44 | 0.67 | 0.1352 |
dot_recall@5 | 0.78 | 0.1169 | 0.73 | 0.258 | 0.2541 | 0.9733 | 0.4129 | 0.76 | 0.92 | 0.2427 | 0.72 | 0.75 | 0.2113 |
dot_recall@10 | 0.84 | 0.1408 | 0.84 | 0.3197 | 0.371 | 0.9733 | 0.5074 | 0.83 | 0.98 | 0.3467 | 0.82 | 0.81 | 0.3371 |
dot_ndcg@10 | 0.6831 | 0.3577 | 0.7016 | 0.2825 | 0.6615 | 0.9134 | 0.4345 | 0.7989 | 0.8858 | 0.339 | 0.4614 | 0.6885 | 0.5945 |
dot_mrr@10 | 0.6327 | 0.5392 | 0.6728 | 0.3947 | 0.8275 | 0.9057 | 0.5141 | 0.9144 | 0.8713 | 0.5398 | 0.3466 | 0.6556 | 0.8328 |
dot_map@100 | 0.6416 | 0.1733 | 0.6572 | 0.2299 | 0.5179 | 0.8881 | 0.3738 | 0.7399 | 0.8503 | 0.2567 | 0.3539 | 0.6523 | 0.4093 |
query_active_dims | 8.02 | 7.8 | 11.68 | 78.88 | 9.4 | 35.18 | 14.32 | 22.88 | 14.18 | 21.5 | 192.48 | 71.74 | 10.7143 |
query_sparsity_ratio | 0.9997 | 0.9997 | 0.9996 | 0.9974 | 0.9997 | 0.9988 | 0.9995 | 0.9993 | 0.9995 | 0.9993 | 0.9937 | 0.9976 | 0.9996 |
corpus_active_dims | 105.1868 | 199.2269 | 128.6282 | 155.6984 | 105.1973 | 146.2776 | 143.9738 | 103.4279 | 15.7222 | 186.5579 | 193.5227 | 211.6221 | 157.7224 |
corpus_sparsity_ratio | 0.9966 | 0.9935 | 0.9958 | 0.9949 | 0.9966 | 0.9952 | 0.9953 | 0.9966 | 0.9995 | 0.9939 | 0.9937 | 0.9931 | 0.9948 |
Sparse Nano BEIR
- Dataset:
NanoBEIR_mean
- Evaluated with
SparseNanoBEIREvaluator
with these parameters:{ "dataset_names": [ "msmarco", "nfcorpus", "nq" ] }
Metric | Value |
---|---|
dot_accuracy@1 | 0.4867 |
dot_accuracy@3 | 0.66 |
dot_accuracy@5 | 0.7467 |
dot_accuracy@10 | 0.78 |
dot_precision@1 | 0.4867 |
dot_precision@3 | 0.2933 |
dot_precision@5 | 0.2333 |
dot_precision@10 | 0.15 |
dot_recall@1 | 0.3545 |
dot_recall@3 | 0.4931 |
dot_recall@5 | 0.5569 |
dot_recall@10 | 0.5941 |
dot_ndcg@10 | 0.565 |
dot_mrr@10 | 0.5891 |
dot_map@100 | 0.4718 |
query_active_dims | 7.9133 |
query_sparsity_ratio | 0.9997 |
corpus_active_dims | 77.9468 |
corpus_sparsity_ratio | 0.9974 |
Sparse Nano BEIR
- Dataset:
NanoBEIR_mean
- Evaluated with
SparseNanoBEIREvaluator
with these parameters:{ "dataset_names": [ "climatefever", "dbpedia", "fever", "fiqa2018", "hotpotqa", "msmarco", "nfcorpus", "nq", "quoraretrieval", "scidocs", "arguana", "scifact", "touche2020" ] }
Metric | Value |
---|---|
dot_accuracy@1 | 0.5734 |
dot_accuracy@3 | 0.723 |
dot_accuracy@5 | 0.7892 |
dot_accuracy@10 | 0.8554 |
dot_precision@1 | 0.5734 |
dot_precision@3 | 0.3472 |
dot_precision@5 | 0.2724 |
dot_precision@10 | 0.1897 |
dot_recall@1 | 0.3398 |
dot_recall@3 | 0.4746 |
dot_recall@5 | 0.5484 |
dot_recall@10 | 0.6243 |
dot_ndcg@10 | 0.6002 |
dot_mrr@10 | 0.6652 |
dot_map@100 | 0.5188 |
query_active_dims | 38.4099 |
query_sparsity_ratio | 0.9987 |
corpus_active_dims | 133.1462 |
corpus_sparsity_ratio | 0.9956 |
Training Details
Training Dataset
msmarco-hard-negatives-cross-encoder-ms-marco-mini_lm-l-6-v2-scores
- Dataset: msmarco-hard-negatives-cross-encoder-ms-marco-mini_lm-l-6-v2-scores
- Size: 522,751 training samples
- Columns:
query
,positive
,negative
, andlabel
- Approximate statistics based on the first 1000 samples:
query positive negative label type string string string float details - min: 4 tokens
- mean: 9.16 tokens
- max: 48 tokens
- min: 17 tokens
- mean: 80.22 tokens
- max: 256 tokens
- min: 20 tokens
- mean: 77.64 tokens
- max: 234 tokens
- min: -17.67
- mean: -1.3
- max: 7.3
- Samples:
query positive negative label can pasta be cooked and put in fridge
Cooked, refrigerated pasta is easily reheated by dropping it in boiling water for several seconds. Cooked pasta can also be frozen for up to 2 weeks. The pasta should be slightly cooled first and tossed with a bit of cooking or olive oil and placed into airtight freezer bags or containers.
CLOSE. 1 Cooked pasta can be stored in airtight containers in the refrigerator for 3 to 5 days. 2 Or, freeze cooked pasta for up to 2 weeks: Cool the pasta slightly, then drizzle with a little olive oil or cooking oil and toss gently. 3 Defrost a bag of frozen pasta in a colander in the sink by running tepid water over it.
-0.22228431701660156
what is a oscillator circuit
An electronic oscillator is an electronic circuit that produces a periodic, oscillating electronic signal, often a sine wave or a square wave. Oscillators convert direct current (DC) from a power supply to an alternating current signal.
An electronic oscillator is an electronic circuit that produces a periodic, oscillating electronic signal, often a sine wave or a square wave. Oscillators convert direct current (DC) from a power supply to an alternating current (AC) signal. They are widely used in many electronic devices.
-0.22161579132080078
what company makes the mclaren
Mclaren are a British company, the cars are manufactured in Surrey, England.
McLaren Automotive. McLaren Automotive (often simply McLaren) is a British automaker founded in 1963 by New Zealander Bruce McLaren and is based at the McLaren Technology Campus in Woking, Surrey. It produces and manufactures sports and luxury cars, usually produced in-house at designated production facilities.
-0.6905484199523926
- Loss:
SpladeLoss
with these parameters:{ "loss": "SparseMarginMSELoss", "document_regularizer_weight": 0.08, "query_regularizer_weight": 0.1 }
Evaluation Dataset
msmarco-hard-negatives-cross-encoder-ms-marco-mini_lm-l-6-v2-scores
- Dataset: msmarco-hard-negatives-cross-encoder-ms-marco-mini_lm-l-6-v2-scores
- Size: 10,000 evaluation samples
- Columns:
query
,positive
,negative
, andlabel
- Approximate statistics based on the first 1000 samples:
query positive negative label type string string string float details - min: 4 tokens
- mean: 8.99 tokens
- max: 28 tokens
- min: 23 tokens
- mean: 80.74 tokens
- max: 229 tokens
- min: 21 tokens
- mean: 78.11 tokens
- max: 214 tokens
- min: -17.67
- mean: -1.46
- max: 5.21
- Samples:
query positive negative label what is the legal meaning of a life estate
DEFINITION of 'Life Estate'. A type of estate that only lasts for the lifetime of the beneficiary. A life estate is a very restrictive type of estate that prevents the beneficiary from selling the property that produces the income before the beneficiary's death. But the estate cannot continue beyond the life of the beneficiary.
In common law and statutory law, a life estate is the ownership of land for the duration of a person's life. In legal terms it is an estate in real property that ends at death when ownership of the property may revert to the original owner, or it may pass to another person. The owner of a life estate is called a life tenant.
-1.0078916549682617
what is the latest nvidia graphics card
GeForce GTX TITAN X is the ultimate graphics card. It combines the latest technologies and performance of the new NVIDIA Maxwell⢠architecture to be the fastest, most advanced graphics card on the planet.
NVIDIA Titan X: The Ultimate Graphics Card Unleashed â Features Pascal GP102 GPU, 12 GB G5X Memory and a $1200 US Price. Today, NVIDIA launches their $1200 US, Titan X graphics card aiming the enthusiast and professional market. Do not mistake this card with last yearâs GeForce GTX Titan X which featured the Maxwell GPU as the latest Titan X adopts the Pascal GPU architecture.
-0.10915374755859375
what elements are used in a jewelry store
the most common metallic elements used in jewelry are gold, silver, platinum and copper. technically speaking, a diamond is an elemental form of carbon, if you want to includ ⦠e that as well.most other jewelry components are compounds or mixtures of different elements. 1 person found this useful. Kimberly O'Brien. There are so many ways to sell your jewelry, but the problem is you prâ¦. 2 Shopping on Jeweler's Row Offers Maximum Selection and Minimum Prices Jeweler's Row is a stretch of several downtown Chicago blocks with an abundance of fine jewelry stores. 3 If there is a heaven for jewelry shoppers, this is it. 4 In one buildingâ¦.
Silver and gold are both malleable and lustrous, excellent properties for using these elements in jewelry. Metalloids share some characteristics of both metals and nonmetals. For example, silicon has luster and looks like a metal but does not conduct heat or electricity like a metal.
1.2301173210144043
- Loss:
SpladeLoss
with these parameters:{ "loss": "SparseMarginMSELoss", "document_regularizer_weight": 0.08, "query_regularizer_weight": 0.1 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epochper_device_train_batch_size
: 32per_device_eval_batch_size
: 32learning_rate
: 2e-05num_train_epochs
: 35warmup_ratio
: 0.05bf16
: Trueload_best_model_at_end
: True
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: epochprediction_loss_only
: Trueper_device_train_batch_size
: 32per_device_eval_batch_size
: 32per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 35max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.05warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 2ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Truedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsehub_revision
: Nonegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseliger_kernel_config
: Noneeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportionalrouter_mapping
: {}learning_rate_mapping
: {}
Training Logs
Click to expand
Epoch | Step | Training Loss | Validation Loss | NanoMSMARCO_dot_ndcg@10 | NanoNFCorpus_dot_ndcg@10 | NanoNQ_dot_ndcg@10 | NanoBEIR_mean_dot_ndcg@10 | NanoClimateFEVER_dot_ndcg@10 | NanoDBPedia_dot_ndcg@10 | NanoFEVER_dot_ndcg@10 | NanoFiQA2018_dot_ndcg@10 | NanoHotpotQA_dot_ndcg@10 | NanoQuoraRetrieval_dot_ndcg@10 | NanoSCIDOCS_dot_ndcg@10 | NanoArguAna_dot_ndcg@10 | NanoSciFact_dot_ndcg@10 | NanoTouche2020_dot_ndcg@10 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.0980 | 400 | 147401.16 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.1959 | 800 | 26.7579 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.2939 | 1200 | 7.3508 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.3919 | 1600 | 6.0019 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.4898 | 2000 | 5.0412 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.5878 | 2400 | 4.2727 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.6858 | 2800 | 3.6961 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.7837 | 3200 | 3.4853 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.8817 | 3600 | 3.2762 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
0.9797 | 4000 | 3.1646 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.0 | 4083 | - | 2.7194 | 0.6049 | 0.3374 | 0.6824 | 0.5416 | - | - | - | - | - | - | - | - | - | - |
1.0776 | 4400 | 2.8406 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.1756 | 4800 | 2.7254 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.2736 | 5200 | 2.6307 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.3715 | 5600 | 2.5854 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.4695 | 6000 | 2.6132 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.5675 | 6400 | 2.5701 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.6654 | 6800 | 2.4706 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.7634 | 7200 | 2.4933 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.8614 | 7600 | 2.47 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
1.9593 | 8000 | 2.3888 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
2.0 | 8166 | - | 2.3257 | 0.6389 | 0.3311 | 0.6923 | 0.5541 | - | - | - | - | - | - | - | - | - | - |
2.0573 | 8400 | 2.0776 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
2.1553 | 8800 | 1.8881 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
2.2532 | 9200 | 1.8701 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
2.3512 | 9600 | 1.8678 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
2.4492 | 10000 | 1.8307 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
2.5471 | 10400 | 1.8535 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
2.6451 | 10800 | 1.8208 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
2.7431 | 11200 | 1.8596 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
2.8410 | 11600 | 1.8242 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
2.9390 | 12000 | 1.8065 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
3.0 | 12249 | - | 2.0072 | 0.6582 | 0.3463 | 0.6827 | 0.5624 | - | - | - | - | - | - | - | - | - | - |
3.0370 | 12400 | 1.6428 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
3.1349 | 12800 | 1.3588 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
3.2329 | 13200 | 1.3502 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
3.3309 | 13600 | 1.4121 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
3.4289 | 14000 | 1.4051 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
3.5268 | 14400 | 1.3704 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
3.6248 | 14800 | 1.3929 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
3.7228 | 15200 | 1.4014 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
3.8207 | 15600 | 1.41 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
3.9187 | 16000 | 1.4211 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
4.0 | 16332 | - | 1.9579 | 0.6758 | 0.3445 | 0.6929 | 0.5711 | - | - | - | - | - | - | - | - | - | - |
4.0167 | 16400 | 1.3491 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
4.1146 | 16800 | 1.0892 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
4.2126 | 17200 | 1.1012 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
4.3106 | 17600 | 1.1157 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
4.4085 | 18000 | 1.1267 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
4.5065 | 18400 | 1.1186 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
4.6045 | 18800 | 1.1348 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
4.7024 | 19200 | 1.1369 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
4.8004 | 19600 | 1.1204 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
4.8984 | 20000 | 1.1791 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
4.9963 | 20400 | 1.1559 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
5.0 | 20415 | - | 1.9729 | 0.6652 | 0.3585 | 0.6790 | 0.5676 | - | - | - | - | - | - | - | - | - | - |
5.0943 | 20800 | 0.909 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
5.1923 | 21200 | 0.9201 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
5.2902 | 21600 | 0.9246 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
5.3882 | 22000 | 0.9491 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
5.4862 | 22400 | 0.9559 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
5.5841 | 22800 | 0.9526 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
5.6821 | 23200 | 0.9688 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
5.7801 | 23600 | 0.9702 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
5.8780 | 24000 | 0.967 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
5.9760 | 24400 | 0.9934 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
6.0 | 24498 | - | 1.9280 | 0.6620 | 0.3520 | 0.6743 | 0.5628 | - | - | - | - | - | - | - | - | - | - |
6.0740 | 24800 | 0.837 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
6.1719 | 25200 | 0.8065 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
6.2699 | 25600 | 0.8057 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
6.3679 | 26000 | 0.8283 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
6.4658 | 26400 | 0.8235 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
6.5638 | 26800 | 0.857 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
6.6618 | 27200 | 0.8607 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
6.7597 | 27600 | 0.8537 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
6.8577 | 28000 | 0.8634 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
6.9557 | 28400 | 0.8693 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
7.0 | 28581 | - | 1.9013 | 0.6494 | 0.3543 | 0.6988 | 0.5675 | - | - | - | - | - | - | - | - | - | - |
7.0536 | 28800 | 0.7885 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
7.1516 | 29200 | 0.7167 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
7.2496 | 29600 | 0.7331 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
7.3475 | 30000 | 0.7376 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
7.4455 | 30400 | 0.7632 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
7.5435 | 30800 | 0.7466 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
7.6414 | 31200 | 0.7709 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
7.7394 | 31600 | 0.777 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
7.8374 | 32000 | 0.7816 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
7.9353 | 32400 | 0.7925 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
8.0 | 32664 | - | 1.9439 | 0.6650 | 0.3594 | 0.6768 | 0.5670 | - | - | - | - | - | - | - | - | - | - |
8.0333 | 32800 | 0.7509 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
8.1313 | 33200 | 0.6741 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
8.2292 | 33600 | 0.6762 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
8.3272 | 34000 | 0.6896 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
8.4252 | 34400 | 0.688 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
8.5231 | 34800 | 0.7047 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
8.6211 | 35200 | 0.706 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
8.7191 | 35600 | 0.7033 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
8.8170 | 36000 | 0.729 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
8.9150 | 36400 | 0.7322 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
9.0 | 36747 | - | 1.9782 | 0.6333 | 0.3635 | 0.6881 | 0.5617 | - | - | - | - | - | - | - | - | - | - |
9.0130 | 36800 | 0.7245 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
9.1109 | 37200 | 0.6358 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
9.2089 | 37600 | 0.6512 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
9.3069 | 38000 | 0.6561 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
9.4048 | 38400 | 0.6514 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
9.5028 | 38800 | 0.6675 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
9.6008 | 39200 | 0.6743 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
9.6988 | 39600 | 0.6693 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
9.7967 | 40000 | 0.6795 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
9.8947 | 40400 | 0.6856 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
9.9927 | 40800 | 0.6938 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
10.0 | 40830 | - | 2.029 | 0.6831 | 0.3577 | 0.7016 | 0.5808 | - | - | - | - | - | - | - | - | - | - |
10.0906 | 41200 | 0.6134 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
10.1886 | 41600 | 0.6158 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
10.2866 | 42000 | 0.6222 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
10.3845 | 42400 | 0.6288 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
10.4825 | 42800 | 0.6341 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
10.5805 | 43200 | 0.643 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
10.6784 | 43600 | 0.6443 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
10.7764 | 44000 | 0.6563 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
10.8744 | 44400 | 0.666 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
10.9723 | 44800 | 0.6624 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
11.0 | 44913 | - | 2.0551 | 0.6483 | 0.3588 | 0.6733 | 0.5601 | - | - | - | - | - | - | - | - | - | - |
11.0703 | 45200 | 0.6143 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
11.1683 | 45600 | 0.5974 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
11.2662 | 46000 | 0.6035 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
11.3642 | 46400 | 0.6159 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
11.4622 | 46800 | 0.6141 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
11.5601 | 47200 | 0.6237 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
11.6581 | 47600 | 0.6235 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
11.7561 | 48000 | 0.6335 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
11.8540 | 48400 | 0.6361 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
11.9520 | 48800 | 0.6384 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
12.0 | 48996 | - | 2.0546 | 0.6704 | 0.3582 | 0.6972 | 0.5753 | - | - | - | - | - | - | - | - | - | - |
12.0500 | 49200 | 0.5967 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
12.1479 | 49600 | 0.5669 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
12.2459 | 50000 | 0.5741 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
12.3439 | 50400 | 0.5756 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
12.4418 | 50800 | 0.5823 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
12.5398 | 51200 | 0.5855 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
12.6378 | 51600 | 0.5823 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
12.7357 | 52000 | 0.5872 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
12.8337 | 52400 | 0.5864 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
12.9317 | 52800 | 0.5885 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
13.0 | 53079 | - | 2.0731 | 0.6569 | 0.3629 | 0.6821 | 0.5673 | - | - | - | - | - | - | - | - | - | - |
13.0296 | 53200 | 0.5772 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
13.1276 | 53600 | 0.5367 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
13.2256 | 54000 | 0.5354 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
13.3235 | 54400 | 0.5426 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
13.4215 | 54800 | 0.5413 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
13.5195 | 55200 | 0.5372 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
13.6174 | 55600 | 0.5479 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
13.7154 | 56000 | 0.5527 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
13.8134 | 56400 | 0.5499 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
13.9113 | 56800 | 0.5456 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
14.0 | 57162 | - | 2.0736 | 0.6528 | 0.3625 | 0.7021 | 0.5725 | - | - | - | - | - | - | - | - | - | - |
14.0093 | 57200 | 0.5438 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
14.1073 | 57600 | 0.5051 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
14.2052 | 58000 | 0.5028 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
14.3032 | 58400 | 0.5059 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
14.4012 | 58800 | 0.5055 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
14.4991 | 59200 | 0.5101 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
14.5971 | 59600 | 0.5157 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
14.6951 | 60000 | 0.5085 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
14.7930 | 60400 | 0.518 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
14.8910 | 60800 | 0.5101 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
14.9890 | 61200 | 0.5141 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
15.0 | 61245 | - | 2.0690 | 0.6528 | 0.3545 | 0.7131 | 0.5735 | - | - | - | - | - | - | - | - | - | - |
15.0869 | 61600 | 0.4812 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
15.1849 | 62000 | 0.4729 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
15.2829 | 62400 | 0.4787 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
15.3808 | 62800 | 0.4809 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
15.4788 | 63200 | 0.4762 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
15.5768 | 63600 | 0.4835 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
15.6747 | 64000 | 0.4877 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
15.7727 | 64400 | 0.4818 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
15.8707 | 64800 | 0.4893 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
15.9687 | 65200 | 0.4853 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
16.0 | 65328 | - | 2.0776 | 0.6552 | 0.3683 | 0.6883 | 0.5706 | - | - | - | - | - | - | - | - | - | - |
16.0666 | 65600 | 0.4638 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
16.1646 | 66000 | 0.4465 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
16.2626 | 66400 | 0.4546 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
16.3605 | 66800 | 0.4572 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
16.4585 | 67200 | 0.4569 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
16.5565 | 67600 | 0.4608 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
16.6544 | 68000 | 0.4584 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
16.7524 | 68400 | 0.4587 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
16.8504 | 68800 | 0.4612 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
16.9483 | 69200 | 0.4625 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
17.0 | 69411 | - | 2.0769 | 0.6490 | 0.3571 | 0.7061 | 0.5707 | - | - | - | - | - | - | - | - | - | - |
17.0463 | 69600 | 0.4519 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
17.1443 | 70000 | 0.4297 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
17.2422 | 70400 | 0.4355 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
17.3402 | 70800 | 0.4387 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
17.4382 | 71200 | 0.437 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
17.5361 | 71600 | 0.439 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
17.6341 | 72000 | 0.433 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
17.7321 | 72400 | 0.4411 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
17.8300 | 72800 | 0.435 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
17.9280 | 73200 | 0.4452 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
18.0 | 73494 | - | 2.0449 | 0.6553 | 0.3542 | 0.7062 | 0.5719 | - | - | - | - | - | - | - | - | - | - |
18.0260 | 73600 | 0.4342 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
18.1239 | 74000 | 0.4147 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
18.2219 | 74400 | 0.4137 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
18.3199 | 74800 | 0.4158 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
18.4178 | 75200 | 0.4161 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
18.5158 | 75600 | 0.4152 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
18.6138 | 76000 | 0.4198 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
18.7117 | 76400 | 0.4204 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
18.8097 | 76800 | 0.4179 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
18.9077 | 77200 | 0.4182 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
19.0 | 77577 | - | 2.0543 | 0.6484 | 0.3547 | 0.6994 | 0.5675 | - | - | - | - | - | - | - | - | - | - |
19.0056 | 77600 | 0.4168 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
19.1036 | 78000 | 0.3969 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
19.2016 | 78400 | 0.4014 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
19.2995 | 78800 | 0.3979 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
19.3975 | 79200 | 0.3989 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
19.4955 | 79600 | 0.401 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
19.5934 | 80000 | 0.3991 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
19.6914 | 80400 | 0.4 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
19.7894 | 80800 | 0.4021 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
19.8873 | 81200 | 0.4024 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
19.9853 | 81600 | 0.4052 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
20.0 | 81660 | - | 2.0791 | 0.6495 | 0.3545 | 0.6999 | 0.5680 | - | - | - | - | - | - | - | - | - | - |
20.0833 | 82000 | 0.3812 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
20.1812 | 82400 | 0.3809 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
20.2792 | 82800 | 0.3831 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
20.3772 | 83200 | 0.3845 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
20.4751 | 83600 | 0.3828 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
20.5731 | 84000 | 0.3829 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
20.6711 | 84400 | 0.3839 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
20.7690 | 84800 | 0.3869 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
20.8670 | 85200 | 0.3883 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
20.9650 | 85600 | 0.386 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
21.0 | 85743 | - | 2.0739 | 0.6378 | 0.3526 | 0.6996 | 0.5633 | - | - | - | - | - | - | - | - | - | - |
21.0629 | 86000 | 0.3706 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
21.1609 | 86400 | 0.3686 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
21.2589 | 86800 | 0.3654 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
21.3568 | 87200 | 0.372 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
21.4548 | 87600 | 0.3696 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
21.5528 | 88000 | 0.3692 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
21.6507 | 88400 | 0.37 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
21.7487 | 88800 | 0.3719 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
21.8467 | 89200 | 0.3754 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
21.9446 | 89600 | 0.3746 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
22.0 | 89826 | - | 2.0893 | 0.6433 | 0.3524 | 0.7000 | 0.5653 | - | - | - | - | - | - | - | - | - | - |
22.0426 | 90000 | 0.3642 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
22.1406 | 90400 | 0.3536 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
22.2386 | 90800 | 0.3547 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
22.3365 | 91200 | 0.3539 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
22.4345 | 91600 | 0.3538 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
22.5325 | 92000 | 0.3596 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
22.6304 | 92400 | 0.3572 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
22.7284 | 92800 | 0.3604 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
22.8264 | 93200 | 0.3575 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
22.9243 | 93600 | 0.3591 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
23.0 | 93909 | - | 2.0807 | 0.6458 | 0.3558 | 0.6872 | 0.5629 | - | - | - | - | - | - | - | - | - | - |
23.0223 | 94000 | 0.3515 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
23.1203 | 94400 | 0.3432 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
23.2182 | 94800 | 0.3448 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
23.3162 | 95200 | 0.3453 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
23.4142 | 95600 | 0.3468 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
23.5121 | 96000 | 0.3443 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
23.6101 | 96400 | 0.3457 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
23.7081 | 96800 | 0.3459 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
23.8060 | 97200 | 0.346 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
23.9040 | 97600 | 0.3462 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
24.0 | 97992 | - | 2.0896 | 0.6445 | 0.3547 | 0.6967 | 0.5653 | - | - | - | - | - | - | - | - | - | - |
24.0020 | 98000 | 0.3452 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
24.0999 | 98400 | 0.3366 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
24.1979 | 98800 | 0.3341 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
24.2959 | 99200 | 0.3317 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
24.3938 | 99600 | 0.3345 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
24.4918 | 100000 | 0.3347 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
24.5898 | 100400 | 0.3371 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
24.6877 | 100800 | 0.3364 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
24.7857 | 101200 | 0.3354 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
24.8837 | 101600 | 0.336 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
24.9816 | 102000 | 0.3346 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
25.0 | 102075 | - | 2.1040 | 0.6366 | 0.3614 | 0.6919 | 0.5633 | - | - | - | - | - | - | - | - | - | - |
25.0796 | 102400 | 0.3247 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
25.1776 | 102800 | 0.3268 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
25.2755 | 103200 | 0.3218 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
25.3735 | 103600 | 0.3264 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
25.4715 | 104000 | 0.3256 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
25.5694 | 104400 | 0.3249 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
25.6674 | 104800 | 0.3263 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
25.7654 | 105200 | 0.3273 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
25.8633 | 105600 | 0.3263 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
25.9613 | 106000 | 0.3299 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
26.0 | 106158 | - | 2.1057 | 0.6505 | 0.3534 | 0.6897 | 0.5645 | - | - | - | - | - | - | - | - | - | - |
26.0593 | 106400 | 0.3175 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
26.1572 | 106800 | 0.316 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
26.2552 | 107200 | 0.3155 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
26.3532 | 107600 | 0.3153 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
26.4511 | 108000 | 0.3165 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
26.5491 | 108400 | 0.3163 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
26.6471 | 108800 | 0.3164 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
26.7450 | 109200 | 0.3216 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
26.8430 | 109600 | 0.3186 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
26.9410 | 110000 | 0.3173 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
27.0 | 110241 | - | 2.1127 | 0.6377 | 0.3499 | 0.6968 | 0.5615 | - | - | - | - | - | - | - | - | - | - |
27.0389 | 110400 | 0.315 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
27.1369 | 110800 | 0.3052 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
27.2349 | 111200 | 0.3063 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
27.3328 | 111600 | 0.3052 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
27.4308 | 112000 | 0.3091 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
27.5288 | 112400 | 0.3096 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
27.6267 | 112800 | 0.3084 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
27.7247 | 113200 | 0.3097 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
27.8227 | 113600 | 0.3108 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
27.9206 | 114000 | 0.3098 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
28.0 | 114324 | - | 2.1209 | 0.6504 | 0.3525 | 0.6904 | 0.5644 | - | - | - | - | - | - | - | - | - | - |
28.0186 | 114400 | 0.3059 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
28.1166 | 114800 | 0.3007 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
28.2145 | 115200 | 0.302 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
28.3125 | 115600 | 0.3025 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
28.4105 | 116000 | 0.2988 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
28.5084 | 116400 | 0.3019 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
28.6064 | 116800 | 0.3027 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
28.7044 | 117200 | 0.3002 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
28.8024 | 117600 | 0.3027 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
28.9003 | 118000 | 0.302 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
28.9983 | 118400 | 0.3025 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
29.0 | 118407 | - | 2.1126 | 0.6565 | 0.3536 | 0.6922 | 0.5674 | - | - | - | - | - | - | - | - | - | - |
29.0963 | 118800 | 0.294 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
29.1942 | 119200 | 0.2934 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
29.2922 | 119600 | 0.2971 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
29.3902 | 120000 | 0.2962 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
29.4881 | 120400 | 0.2936 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
29.5861 | 120800 | 0.2935 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
29.6841 | 121200 | 0.2943 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
29.7820 | 121600 | 0.2919 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
29.8800 | 122000 | 0.2942 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
29.9780 | 122400 | 0.2957 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
30.0 | 122490 | - | 2.1210 | 0.6491 | 0.3531 | 0.6910 | 0.5644 | - | - | - | - | - | - | - | - | - | - |
30.0759 | 122800 | 0.2922 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
30.1739 | 123200 | 0.2889 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
30.2719 | 123600 | 0.2891 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
30.3698 | 124000 | 0.2907 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
30.4678 | 124400 | 0.2892 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
30.5658 | 124800 | 0.289 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
30.6637 | 125200 | 0.2884 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
30.7617 | 125600 | 0.2888 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
30.8597 | 126000 | 0.2893 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
30.9576 | 126400 | 0.2883 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
31.0 | 126573 | - | 2.1149 | 0.6447 | 0.3526 | 0.6919 | 0.5630 | - | - | - | - | - | - | - | - | - | - |
31.0556 | 126800 | 0.2865 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
31.1536 | 127200 | 0.284 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
31.2515 | 127600 | 0.2839 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
31.3495 | 128000 | 0.284 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
31.4475 | 128400 | 0.2839 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
31.5454 | 128800 | 0.2831 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
31.6434 | 129200 | 0.284 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
31.7414 | 129600 | 0.2836 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
31.8393 | 130000 | 0.2844 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
31.9373 | 130400 | 0.2862 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
32.0 | 130656 | - | 2.1219 | 0.6496 | 0.3516 | 0.6945 | 0.5652 | - | - | - | - | - | - | - | - | - | - |
32.0353 | 130800 | 0.282 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
32.1332 | 131200 | 0.2795 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
32.2312 | 131600 | 0.2792 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
32.3292 | 132000 | 0.2813 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
32.4271 | 132400 | 0.2798 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
32.5251 | 132800 | 0.2801 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
32.6231 | 133200 | 0.2773 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
32.7210 | 133600 | 0.28 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
32.8190 | 134000 | 0.2789 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
32.9170 | 134400 | 0.2812 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
33.0 | 134739 | - | 2.1282 | 0.6433 | 0.3519 | 0.6907 | 0.5620 | - | - | - | - | - | - | - | - | - | - |
33.0149 | 134800 | 0.278 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
33.1129 | 135200 | 0.2763 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
33.2109 | 135600 | 0.2771 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
33.3088 | 136000 | 0.2755 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
33.4068 | 136400 | 0.2763 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
33.5048 | 136800 | 0.2748 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
33.6027 | 137200 | 0.2761 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
33.7007 | 137600 | 0.276 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
33.7987 | 138000 | 0.2779 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
33.8966 | 138400 | 0.2744 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
33.9946 | 138800 | 0.2766 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
34.0 | 138822 | - | 2.1325 | 0.6510 | 0.3507 | 0.6907 | 0.5641 | - | - | - | - | - | - | - | - | - | - |
34.0926 | 139200 | 0.275 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
34.1905 | 139600 | 0.2724 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
34.2885 | 140000 | 0.2726 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
34.3865 | 140400 | 0.2735 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
34.4844 | 140800 | 0.2717 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
34.5824 | 141200 | 0.2736 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
34.6804 | 141600 | 0.272 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
34.7783 | 142000 | 0.2713 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
34.8763 | 142400 | 0.2738 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
34.9743 | 142800 | 0.2715 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
35.0 | 142905 | - | 2.1323 | 0.6510 | 0.3530 | 0.6910 | 0.5650 | - | - | - | - | - | - | - | - | - | - |
-1 | -1 | - | - | 0.6831 | 0.3577 | 0.7016 | 0.6002 | 0.2825 | 0.6615 | 0.9134 | 0.4345 | 0.7989 | 0.8858 | 0.3390 | 0.4614 | 0.6885 | 0.5945 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.13.3
- Sentence Transformers: 5.1.0.dev0
- Transformers: 4.53.2
- PyTorch: 2.7.1+cu126
- Accelerate: 1.9.0
- Datasets: 3.6.0
- Tokenizers: 0.21.2
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
SpladeLoss
@misc{formal2022distillationhardnegativesampling,
title={From Distillation to Hard Negative Sampling: Making Sparse Neural IR Models More Effective},
author={Thibault Formal and Carlos Lassance and Benjamin Piwowarski and Stéphane Clinchant},
year={2022},
eprint={2205.04733},
archivePrefix={arXiv},
primaryClass={cs.IR},
url={https://arxiv.org/abs/2205.04733},
}
SparseMarginMSELoss
@misc{hofstätter2021improving,
title={Improving Efficient Neural Ranking Models with Cross-Architecture Knowledge Distillation},
author={Sebastian Hofstätter and Sophia Althammer and Michael Schröder and Mete Sertkan and Allan Hanbury},
year={2021},
eprint={2010.02666},
archivePrefix={arXiv},
primaryClass={cs.IR}
}
FlopsLoss
@article{paria2020minimizing,
title={Minimizing flops to learn efficient sparse representations},
author={Paria, Biswajit and Yeh, Chih-Kuan and Yen, Ian EH and Xu, Ning and Ravikumar, Pradeep and P{'o}czos, Barnab{'a}s},
journal={arXiv preprint arXiv:2004.05665},
year={2020}
}
- Downloads last month
- 4
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for arthurbresnu/splade-co-condenser-marco-msmarco-margin-mse-1-bs_128-lr_2e-05-lq_0.1-ld_0.08
Base model
Luyu/co-condenser-marcoEvaluation results
- Dot Accuracy@1 on NanoMSMARCOself-reported0.460
- Dot Accuracy@3 on NanoMSMARCOself-reported0.700
- Dot Accuracy@5 on NanoMSMARCOself-reported0.780
- Dot Accuracy@10 on NanoMSMARCOself-reported0.820
- Dot Precision@1 on NanoMSMARCOself-reported0.460
- Dot Precision@3 on NanoMSMARCOself-reported0.233
- Dot Precision@5 on NanoMSMARCOself-reported0.156
- Dot Precision@10 on NanoMSMARCOself-reported0.082
- Dot Recall@1 on NanoMSMARCOself-reported0.460
- Dot Recall@3 on NanoMSMARCOself-reported0.700