splade-co-condenser-marco trained on MS MARCO hard negatives with distillation

This is a SPLADE Sparse Encoder model finetuned from Luyu/co-condenser-marco on the msmarco-hard-negatives-cross-encoder-ms-marco-mini_lm-l-6-v2-scores dataset using the sentence-transformers library. It maps sentences & paragraphs to a 30522-dimensional sparse vector space and can be used for semantic search and sparse retrieval.

Model Details

Model Description

  • Model Type: SPLADE Sparse Encoder
  • Base model: Luyu/co-condenser-marco
  • Maximum Sequence Length: 256 tokens
  • Output Dimensionality: 30522 dimensions
  • Similarity Function: Dot Product
  • Training Dataset:
    • msmarco-hard-negatives-cross-encoder-ms-marco-mini_lm-l-6-v2-scores
  • Language: en
  • License: apache-2.0

Model Sources

Full Model Architecture

SparseEncoder(
  (0): MLMTransformer({'max_seq_length': 256, 'do_lower_case': False, 'architecture': 'BertForMaskedLM'})
  (1): SpladePooling({'pooling_strategy': 'max', 'activation_function': 'relu', 'word_embedding_dimension': 30522})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SparseEncoder

# Download from the 🤗 Hub
model = SparseEncoder("arthurbresnu/splade-co-condenser-marco-msmarco-margin-mse-1-bs_128-lr_2e-05-lq_0.1-ld_0.08")
# Run inference
queries = [
    "skype how do i get video  voice",
]
documents = [
    'Speaker volume to adjust the sound. Slide the pointer up and down for volume, or select the speaker icon at the top of the volume control to mute your speaker. Select the Video button to add video to a Skype for Business call. Select the IM button to add instant messaging to a Skype for Business call.',
    'To make a free voice or video call on Skype for Web, you need to download a plugin. You can do this when you first sign in, or wait for when you want to make or receive your first call. Installing the plugin should only take a few moments, as the plugin is just 13.6MB. Making a voice or video call is simple.',
    'Century Dictionary and Cyclopedia. 1  n vogue The mode or fashion prevalent at any particular time; popular reception, repute, or estimation; common currency: now generally used in the phrase in vogue: as, a particular style of dress was then in. 2  n vogue General drift of ideas; rumor; report. ***.',
]
query_embeddings = model.encode_query(queries)
document_embeddings = model.encode_document(documents)
print(query_embeddings.shape, document_embeddings.shape)
# [1, 30522] [3, 30522]

# Get the similarity scores for the embeddings
similarities = model.similarity(query_embeddings, document_embeddings)
print(similarities)
# tensor([[14.1007, 17.3336,  0.0000]])

Evaluation

Metrics

Sparse Information Retrieval

  • Datasets: NanoMSMARCO, NanoNFCorpus, NanoNQ, NanoClimateFEVER, NanoDBPedia, NanoFEVER, NanoFiQA2018, NanoHotpotQA, NanoMSMARCO, NanoNFCorpus, NanoNQ, NanoQuoraRetrieval, NanoSCIDOCS, NanoArguAna, NanoSciFact and NanoTouche2020
  • Evaluated with SparseInformationRetrievalEvaluator
Metric NanoMSMARCO NanoNFCorpus NanoNQ NanoClimateFEVER NanoDBPedia NanoFEVER NanoFiQA2018 NanoHotpotQA NanoQuoraRetrieval NanoSCIDOCS NanoArguAna NanoSciFact NanoTouche2020
dot_accuracy@1 0.52 0.48 0.6 0.32 0.76 0.84 0.44 0.88 0.82 0.4 0.12 0.58 0.6939
dot_accuracy@3 0.74 0.6 0.7 0.4 0.88 0.96 0.56 0.92 0.88 0.64 0.44 0.7 0.9796
dot_accuracy@5 0.78 0.62 0.76 0.5 0.9 1.0 0.6 0.96 0.96 0.72 0.72 0.76 0.9796
dot_accuracy@10 0.84 0.66 0.88 0.64 0.92 1.0 0.7 1.0 1.0 0.84 0.82 0.82 1.0
dot_precision@1 0.52 0.48 0.6 0.32 0.76 0.84 0.44 0.88 0.82 0.4 0.12 0.58 0.6939
dot_precision@3 0.2467 0.4067 0.2333 0.1467 0.6467 0.3467 0.2533 0.48 0.3533 0.3267 0.1467 0.2467 0.6803
dot_precision@5 0.156 0.352 0.156 0.116 0.612 0.216 0.188 0.304 0.24 0.236 0.144 0.172 0.649
dot_precision@10 0.084 0.272 0.092 0.08 0.54 0.108 0.118 0.166 0.13 0.17 0.082 0.092 0.5327
dot_recall@1 0.52 0.0641 0.58 0.1567 0.0952 0.7967 0.2367 0.44 0.7207 0.0837 0.12 0.555 0.0482
dot_recall@3 0.74 0.0987 0.66 0.198 0.1886 0.9333 0.3458 0.72 0.8387 0.2017 0.44 0.67 0.1352
dot_recall@5 0.78 0.1169 0.73 0.258 0.2541 0.9733 0.4129 0.76 0.92 0.2427 0.72 0.75 0.2113
dot_recall@10 0.84 0.1408 0.84 0.3197 0.371 0.9733 0.5074 0.83 0.98 0.3467 0.82 0.81 0.3371
dot_ndcg@10 0.6831 0.3577 0.7016 0.2825 0.6615 0.9134 0.4345 0.7989 0.8858 0.339 0.4614 0.6885 0.5945
dot_mrr@10 0.6327 0.5392 0.6728 0.3947 0.8275 0.9057 0.5141 0.9144 0.8713 0.5398 0.3466 0.6556 0.8328
dot_map@100 0.6416 0.1733 0.6572 0.2299 0.5179 0.8881 0.3738 0.7399 0.8503 0.2567 0.3539 0.6523 0.4093
query_active_dims 8.02 7.8 11.68 78.88 9.4 35.18 14.32 22.88 14.18 21.5 192.48 71.74 10.7143
query_sparsity_ratio 0.9997 0.9997 0.9996 0.9974 0.9997 0.9988 0.9995 0.9993 0.9995 0.9993 0.9937 0.9976 0.9996
corpus_active_dims 105.1868 199.2269 128.6282 155.6984 105.1973 146.2776 143.9738 103.4279 15.7222 186.5579 193.5227 211.6221 157.7224
corpus_sparsity_ratio 0.9966 0.9935 0.9958 0.9949 0.9966 0.9952 0.9953 0.9966 0.9995 0.9939 0.9937 0.9931 0.9948

Sparse Nano BEIR

  • Dataset: NanoBEIR_mean
  • Evaluated with SparseNanoBEIREvaluator with these parameters:
    {
        "dataset_names": [
            "msmarco",
            "nfcorpus",
            "nq"
        ]
    }
    
Metric Value
dot_accuracy@1 0.4867
dot_accuracy@3 0.66
dot_accuracy@5 0.7467
dot_accuracy@10 0.78
dot_precision@1 0.4867
dot_precision@3 0.2933
dot_precision@5 0.2333
dot_precision@10 0.15
dot_recall@1 0.3545
dot_recall@3 0.4931
dot_recall@5 0.5569
dot_recall@10 0.5941
dot_ndcg@10 0.565
dot_mrr@10 0.5891
dot_map@100 0.4718
query_active_dims 7.9133
query_sparsity_ratio 0.9997
corpus_active_dims 77.9468
corpus_sparsity_ratio 0.9974

Sparse Nano BEIR

  • Dataset: NanoBEIR_mean
  • Evaluated with SparseNanoBEIREvaluator with these parameters:
    {
        "dataset_names": [
            "climatefever",
            "dbpedia",
            "fever",
            "fiqa2018",
            "hotpotqa",
            "msmarco",
            "nfcorpus",
            "nq",
            "quoraretrieval",
            "scidocs",
            "arguana",
            "scifact",
            "touche2020"
        ]
    }
    
Metric Value
dot_accuracy@1 0.5734
dot_accuracy@3 0.723
dot_accuracy@5 0.7892
dot_accuracy@10 0.8554
dot_precision@1 0.5734
dot_precision@3 0.3472
dot_precision@5 0.2724
dot_precision@10 0.1897
dot_recall@1 0.3398
dot_recall@3 0.4746
dot_recall@5 0.5484
dot_recall@10 0.6243
dot_ndcg@10 0.6002
dot_mrr@10 0.6652
dot_map@100 0.5188
query_active_dims 38.4099
query_sparsity_ratio 0.9987
corpus_active_dims 133.1462
corpus_sparsity_ratio 0.9956

Training Details

Training Dataset

msmarco-hard-negatives-cross-encoder-ms-marco-mini_lm-l-6-v2-scores

  • Dataset: msmarco-hard-negatives-cross-encoder-ms-marco-mini_lm-l-6-v2-scores
  • Size: 522,751 training samples
  • Columns: query, positive, negative, and label
  • Approximate statistics based on the first 1000 samples:
    query positive negative label
    type string string string float
    details
    • min: 4 tokens
    • mean: 9.16 tokens
    • max: 48 tokens
    • min: 17 tokens
    • mean: 80.22 tokens
    • max: 256 tokens
    • min: 20 tokens
    • mean: 77.64 tokens
    • max: 234 tokens
    • min: -17.67
    • mean: -1.3
    • max: 7.3
  • Samples:
    query positive negative label
    can pasta be cooked and put in fridge Cooked, refrigerated pasta is easily reheated by dropping it in boiling water for several seconds. Cooked pasta can also be frozen for up to 2 weeks. The pasta should be slightly cooled first and tossed with a bit of cooking or olive oil and placed into airtight freezer bags or containers. CLOSE. 1 Cooked pasta can be stored in airtight containers in the refrigerator for 3 to 5 days. 2 Or, freeze cooked pasta for up to 2 weeks: Cool the pasta slightly, then drizzle with a little olive oil or cooking oil and toss gently. 3 Defrost a bag of frozen pasta in a colander in the sink by running tepid water over it. -0.22228431701660156
    what is a oscillator circuit An electronic oscillator is an electronic circuit that produces a periodic, oscillating electronic signal, often a sine wave or a square wave. Oscillators convert direct current (DC) from a power supply to an alternating current signal. An electronic oscillator is an electronic circuit that produces a periodic, oscillating electronic signal, often a sine wave or a square wave. Oscillators convert direct current (DC) from a power supply to an alternating current (AC) signal. They are widely used in many electronic devices. -0.22161579132080078
    what company makes the mclaren Mclaren are a British company, the cars are manufactured in Surrey, England. McLaren Automotive. McLaren Automotive (often simply McLaren) is a British automaker founded in 1963 by New Zealander Bruce McLaren and is based at the McLaren Technology Campus in Woking, Surrey. It produces and manufactures sports and luxury cars, usually produced in-house at designated production facilities. -0.6905484199523926
  • Loss: SpladeLoss with these parameters:
    {
        "loss": "SparseMarginMSELoss",
        "document_regularizer_weight": 0.08,
        "query_regularizer_weight": 0.1
    }
    

Evaluation Dataset

msmarco-hard-negatives-cross-encoder-ms-marco-mini_lm-l-6-v2-scores

  • Dataset: msmarco-hard-negatives-cross-encoder-ms-marco-mini_lm-l-6-v2-scores
  • Size: 10,000 evaluation samples
  • Columns: query, positive, negative, and label
  • Approximate statistics based on the first 1000 samples:
    query positive negative label
    type string string string float
    details
    • min: 4 tokens
    • mean: 8.99 tokens
    • max: 28 tokens
    • min: 23 tokens
    • mean: 80.74 tokens
    • max: 229 tokens
    • min: 21 tokens
    • mean: 78.11 tokens
    • max: 214 tokens
    • min: -17.67
    • mean: -1.46
    • max: 5.21
  • Samples:
    query positive negative label
    what is the legal meaning of a life estate DEFINITION of 'Life Estate'. A type of estate that only lasts for the lifetime of the beneficiary. A life estate is a very restrictive type of estate that prevents the beneficiary from selling the property that produces the income before the beneficiary's death. But the estate cannot continue beyond the life of the beneficiary. In common law and statutory law, a life estate is the ownership of land for the duration of a person's life. In legal terms it is an estate in real property that ends at death when ownership of the property may revert to the original owner, or it may pass to another person. The owner of a life estate is called a life tenant. -1.0078916549682617
    what is the latest nvidia graphics card GeForce GTX TITAN X is the ultimate graphics card. It combines the latest technologies and performance of the new NVIDIA Maxwell™ architecture to be the fastest, most advanced graphics card on the planet. NVIDIA Titan X: The Ultimate Graphics Card Unleashed – Features Pascal GP102 GPU, 12 GB G5X Memory and a $1200 US Price. Today, NVIDIA launches their $1200 US, Titan X graphics card aiming the enthusiast and professional market. Do not mistake this card with last year’s GeForce GTX Titan X which featured the Maxwell GPU as the latest Titan X adopts the Pascal GPU architecture. -0.10915374755859375
    what elements are used in a jewelry store the most common metallic elements used in jewelry are gold, silver, platinum and copper. technically speaking, a diamond is an elemental form of carbon, if you want to includ … e that as well.most other jewelry components are compounds or mixtures of different elements. 1 person found this useful. Kimberly O'Brien. There are so many ways to sell your jewelry, but the problem is you pr…. 2 Shopping on Jeweler's Row Offers Maximum Selection and Minimum Prices Jeweler's Row is a stretch of several downtown Chicago blocks with an abundance of fine jewelry stores. 3 If there is a heaven for jewelry shoppers, this is it. 4 In one building…. Silver and gold are both malleable and lustrous, excellent properties for using these elements in jewelry. Metalloids share some characteristics of both metals and nonmetals. For example, silicon has luster and looks like a metal but does not conduct heat or electricity like a metal. 1.2301173210144043
  • Loss: SpladeLoss with these parameters:
    {
        "loss": "SparseMarginMSELoss",
        "document_regularizer_weight": 0.08,
        "query_regularizer_weight": 0.1
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: epoch
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 32
  • learning_rate: 2e-05
  • num_train_epochs: 35
  • warmup_ratio: 0.05
  • bf16: True
  • load_best_model_at_end: True

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: epoch
  • prediction_loss_only: True
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 32
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 35
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.05
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: True
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 2
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: True
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • hub_revision: None
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • liger_kernel_config: None
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: proportional
  • router_mapping: {}
  • learning_rate_mapping: {}

Training Logs

Click to expand
Epoch Step Training Loss Validation Loss NanoMSMARCO_dot_ndcg@10 NanoNFCorpus_dot_ndcg@10 NanoNQ_dot_ndcg@10 NanoBEIR_mean_dot_ndcg@10 NanoClimateFEVER_dot_ndcg@10 NanoDBPedia_dot_ndcg@10 NanoFEVER_dot_ndcg@10 NanoFiQA2018_dot_ndcg@10 NanoHotpotQA_dot_ndcg@10 NanoQuoraRetrieval_dot_ndcg@10 NanoSCIDOCS_dot_ndcg@10 NanoArguAna_dot_ndcg@10 NanoSciFact_dot_ndcg@10 NanoTouche2020_dot_ndcg@10
0.0980 400 147401.16 - - - - - - - - - - - - - - -
0.1959 800 26.7579 - - - - - - - - - - - - - - -
0.2939 1200 7.3508 - - - - - - - - - - - - - - -
0.3919 1600 6.0019 - - - - - - - - - - - - - - -
0.4898 2000 5.0412 - - - - - - - - - - - - - - -
0.5878 2400 4.2727 - - - - - - - - - - - - - - -
0.6858 2800 3.6961 - - - - - - - - - - - - - - -
0.7837 3200 3.4853 - - - - - - - - - - - - - - -
0.8817 3600 3.2762 - - - - - - - - - - - - - - -
0.9797 4000 3.1646 - - - - - - - - - - - - - - -
1.0 4083 - 2.7194 0.6049 0.3374 0.6824 0.5416 - - - - - - - - - -
1.0776 4400 2.8406 - - - - - - - - - - - - - - -
1.1756 4800 2.7254 - - - - - - - - - - - - - - -
1.2736 5200 2.6307 - - - - - - - - - - - - - - -
1.3715 5600 2.5854 - - - - - - - - - - - - - - -
1.4695 6000 2.6132 - - - - - - - - - - - - - - -
1.5675 6400 2.5701 - - - - - - - - - - - - - - -
1.6654 6800 2.4706 - - - - - - - - - - - - - - -
1.7634 7200 2.4933 - - - - - - - - - - - - - - -
1.8614 7600 2.47 - - - - - - - - - - - - - - -
1.9593 8000 2.3888 - - - - - - - - - - - - - - -
2.0 8166 - 2.3257 0.6389 0.3311 0.6923 0.5541 - - - - - - - - - -
2.0573 8400 2.0776 - - - - - - - - - - - - - - -
2.1553 8800 1.8881 - - - - - - - - - - - - - - -
2.2532 9200 1.8701 - - - - - - - - - - - - - - -
2.3512 9600 1.8678 - - - - - - - - - - - - - - -
2.4492 10000 1.8307 - - - - - - - - - - - - - - -
2.5471 10400 1.8535 - - - - - - - - - - - - - - -
2.6451 10800 1.8208 - - - - - - - - - - - - - - -
2.7431 11200 1.8596 - - - - - - - - - - - - - - -
2.8410 11600 1.8242 - - - - - - - - - - - - - - -
2.9390 12000 1.8065 - - - - - - - - - - - - - - -
3.0 12249 - 2.0072 0.6582 0.3463 0.6827 0.5624 - - - - - - - - - -
3.0370 12400 1.6428 - - - - - - - - - - - - - - -
3.1349 12800 1.3588 - - - - - - - - - - - - - - -
3.2329 13200 1.3502 - - - - - - - - - - - - - - -
3.3309 13600 1.4121 - - - - - - - - - - - - - - -
3.4289 14000 1.4051 - - - - - - - - - - - - - - -
3.5268 14400 1.3704 - - - - - - - - - - - - - - -
3.6248 14800 1.3929 - - - - - - - - - - - - - - -
3.7228 15200 1.4014 - - - - - - - - - - - - - - -
3.8207 15600 1.41 - - - - - - - - - - - - - - -
3.9187 16000 1.4211 - - - - - - - - - - - - - - -
4.0 16332 - 1.9579 0.6758 0.3445 0.6929 0.5711 - - - - - - - - - -
4.0167 16400 1.3491 - - - - - - - - - - - - - - -
4.1146 16800 1.0892 - - - - - - - - - - - - - - -
4.2126 17200 1.1012 - - - - - - - - - - - - - - -
4.3106 17600 1.1157 - - - - - - - - - - - - - - -
4.4085 18000 1.1267 - - - - - - - - - - - - - - -
4.5065 18400 1.1186 - - - - - - - - - - - - - - -
4.6045 18800 1.1348 - - - - - - - - - - - - - - -
4.7024 19200 1.1369 - - - - - - - - - - - - - - -
4.8004 19600 1.1204 - - - - - - - - - - - - - - -
4.8984 20000 1.1791 - - - - - - - - - - - - - - -
4.9963 20400 1.1559 - - - - - - - - - - - - - - -
5.0 20415 - 1.9729 0.6652 0.3585 0.6790 0.5676 - - - - - - - - - -
5.0943 20800 0.909 - - - - - - - - - - - - - - -
5.1923 21200 0.9201 - - - - - - - - - - - - - - -
5.2902 21600 0.9246 - - - - - - - - - - - - - - -
5.3882 22000 0.9491 - - - - - - - - - - - - - - -
5.4862 22400 0.9559 - - - - - - - - - - - - - - -
5.5841 22800 0.9526 - - - - - - - - - - - - - - -
5.6821 23200 0.9688 - - - - - - - - - - - - - - -
5.7801 23600 0.9702 - - - - - - - - - - - - - - -
5.8780 24000 0.967 - - - - - - - - - - - - - - -
5.9760 24400 0.9934 - - - - - - - - - - - - - - -
6.0 24498 - 1.9280 0.6620 0.3520 0.6743 0.5628 - - - - - - - - - -
6.0740 24800 0.837 - - - - - - - - - - - - - - -
6.1719 25200 0.8065 - - - - - - - - - - - - - - -
6.2699 25600 0.8057 - - - - - - - - - - - - - - -
6.3679 26000 0.8283 - - - - - - - - - - - - - - -
6.4658 26400 0.8235 - - - - - - - - - - - - - - -
6.5638 26800 0.857 - - - - - - - - - - - - - - -
6.6618 27200 0.8607 - - - - - - - - - - - - - - -
6.7597 27600 0.8537 - - - - - - - - - - - - - - -
6.8577 28000 0.8634 - - - - - - - - - - - - - - -
6.9557 28400 0.8693 - - - - - - - - - - - - - - -
7.0 28581 - 1.9013 0.6494 0.3543 0.6988 0.5675 - - - - - - - - - -
7.0536 28800 0.7885 - - - - - - - - - - - - - - -
7.1516 29200 0.7167 - - - - - - - - - - - - - - -
7.2496 29600 0.7331 - - - - - - - - - - - - - - -
7.3475 30000 0.7376 - - - - - - - - - - - - - - -
7.4455 30400 0.7632 - - - - - - - - - - - - - - -
7.5435 30800 0.7466 - - - - - - - - - - - - - - -
7.6414 31200 0.7709 - - - - - - - - - - - - - - -
7.7394 31600 0.777 - - - - - - - - - - - - - - -
7.8374 32000 0.7816 - - - - - - - - - - - - - - -
7.9353 32400 0.7925 - - - - - - - - - - - - - - -
8.0 32664 - 1.9439 0.6650 0.3594 0.6768 0.5670 - - - - - - - - - -
8.0333 32800 0.7509 - - - - - - - - - - - - - - -
8.1313 33200 0.6741 - - - - - - - - - - - - - - -
8.2292 33600 0.6762 - - - - - - - - - - - - - - -
8.3272 34000 0.6896 - - - - - - - - - - - - - - -
8.4252 34400 0.688 - - - - - - - - - - - - - - -
8.5231 34800 0.7047 - - - - - - - - - - - - - - -
8.6211 35200 0.706 - - - - - - - - - - - - - - -
8.7191 35600 0.7033 - - - - - - - - - - - - - - -
8.8170 36000 0.729 - - - - - - - - - - - - - - -
8.9150 36400 0.7322 - - - - - - - - - - - - - - -
9.0 36747 - 1.9782 0.6333 0.3635 0.6881 0.5617 - - - - - - - - - -
9.0130 36800 0.7245 - - - - - - - - - - - - - - -
9.1109 37200 0.6358 - - - - - - - - - - - - - - -
9.2089 37600 0.6512 - - - - - - - - - - - - - - -
9.3069 38000 0.6561 - - - - - - - - - - - - - - -
9.4048 38400 0.6514 - - - - - - - - - - - - - - -
9.5028 38800 0.6675 - - - - - - - - - - - - - - -
9.6008 39200 0.6743 - - - - - - - - - - - - - - -
9.6988 39600 0.6693 - - - - - - - - - - - - - - -
9.7967 40000 0.6795 - - - - - - - - - - - - - - -
9.8947 40400 0.6856 - - - - - - - - - - - - - - -
9.9927 40800 0.6938 - - - - - - - - - - - - - - -
10.0 40830 - 2.029 0.6831 0.3577 0.7016 0.5808 - - - - - - - - - -
10.0906 41200 0.6134 - - - - - - - - - - - - - - -
10.1886 41600 0.6158 - - - - - - - - - - - - - - -
10.2866 42000 0.6222 - - - - - - - - - - - - - - -
10.3845 42400 0.6288 - - - - - - - - - - - - - - -
10.4825 42800 0.6341 - - - - - - - - - - - - - - -
10.5805 43200 0.643 - - - - - - - - - - - - - - -
10.6784 43600 0.6443 - - - - - - - - - - - - - - -
10.7764 44000 0.6563 - - - - - - - - - - - - - - -
10.8744 44400 0.666 - - - - - - - - - - - - - - -
10.9723 44800 0.6624 - - - - - - - - - - - - - - -
11.0 44913 - 2.0551 0.6483 0.3588 0.6733 0.5601 - - - - - - - - - -
11.0703 45200 0.6143 - - - - - - - - - - - - - - -
11.1683 45600 0.5974 - - - - - - - - - - - - - - -
11.2662 46000 0.6035 - - - - - - - - - - - - - - -
11.3642 46400 0.6159 - - - - - - - - - - - - - - -
11.4622 46800 0.6141 - - - - - - - - - - - - - - -
11.5601 47200 0.6237 - - - - - - - - - - - - - - -
11.6581 47600 0.6235 - - - - - - - - - - - - - - -
11.7561 48000 0.6335 - - - - - - - - - - - - - - -
11.8540 48400 0.6361 - - - - - - - - - - - - - - -
11.9520 48800 0.6384 - - - - - - - - - - - - - - -
12.0 48996 - 2.0546 0.6704 0.3582 0.6972 0.5753 - - - - - - - - - -
12.0500 49200 0.5967 - - - - - - - - - - - - - - -
12.1479 49600 0.5669 - - - - - - - - - - - - - - -
12.2459 50000 0.5741 - - - - - - - - - - - - - - -
12.3439 50400 0.5756 - - - - - - - - - - - - - - -
12.4418 50800 0.5823 - - - - - - - - - - - - - - -
12.5398 51200 0.5855 - - - - - - - - - - - - - - -
12.6378 51600 0.5823 - - - - - - - - - - - - - - -
12.7357 52000 0.5872 - - - - - - - - - - - - - - -
12.8337 52400 0.5864 - - - - - - - - - - - - - - -
12.9317 52800 0.5885 - - - - - - - - - - - - - - -
13.0 53079 - 2.0731 0.6569 0.3629 0.6821 0.5673 - - - - - - - - - -
13.0296 53200 0.5772 - - - - - - - - - - - - - - -
13.1276 53600 0.5367 - - - - - - - - - - - - - - -
13.2256 54000 0.5354 - - - - - - - - - - - - - - -
13.3235 54400 0.5426 - - - - - - - - - - - - - - -
13.4215 54800 0.5413 - - - - - - - - - - - - - - -
13.5195 55200 0.5372 - - - - - - - - - - - - - - -
13.6174 55600 0.5479 - - - - - - - - - - - - - - -
13.7154 56000 0.5527 - - - - - - - - - - - - - - -
13.8134 56400 0.5499 - - - - - - - - - - - - - - -
13.9113 56800 0.5456 - - - - - - - - - - - - - - -
14.0 57162 - 2.0736 0.6528 0.3625 0.7021 0.5725 - - - - - - - - - -
14.0093 57200 0.5438 - - - - - - - - - - - - - - -
14.1073 57600 0.5051 - - - - - - - - - - - - - - -
14.2052 58000 0.5028 - - - - - - - - - - - - - - -
14.3032 58400 0.5059 - - - - - - - - - - - - - - -
14.4012 58800 0.5055 - - - - - - - - - - - - - - -
14.4991 59200 0.5101 - - - - - - - - - - - - - - -
14.5971 59600 0.5157 - - - - - - - - - - - - - - -
14.6951 60000 0.5085 - - - - - - - - - - - - - - -
14.7930 60400 0.518 - - - - - - - - - - - - - - -
14.8910 60800 0.5101 - - - - - - - - - - - - - - -
14.9890 61200 0.5141 - - - - - - - - - - - - - - -
15.0 61245 - 2.0690 0.6528 0.3545 0.7131 0.5735 - - - - - - - - - -
15.0869 61600 0.4812 - - - - - - - - - - - - - - -
15.1849 62000 0.4729 - - - - - - - - - - - - - - -
15.2829 62400 0.4787 - - - - - - - - - - - - - - -
15.3808 62800 0.4809 - - - - - - - - - - - - - - -
15.4788 63200 0.4762 - - - - - - - - - - - - - - -
15.5768 63600 0.4835 - - - - - - - - - - - - - - -
15.6747 64000 0.4877 - - - - - - - - - - - - - - -
15.7727 64400 0.4818 - - - - - - - - - - - - - - -
15.8707 64800 0.4893 - - - - - - - - - - - - - - -
15.9687 65200 0.4853 - - - - - - - - - - - - - - -
16.0 65328 - 2.0776 0.6552 0.3683 0.6883 0.5706 - - - - - - - - - -
16.0666 65600 0.4638 - - - - - - - - - - - - - - -
16.1646 66000 0.4465 - - - - - - - - - - - - - - -
16.2626 66400 0.4546 - - - - - - - - - - - - - - -
16.3605 66800 0.4572 - - - - - - - - - - - - - - -
16.4585 67200 0.4569 - - - - - - - - - - - - - - -
16.5565 67600 0.4608 - - - - - - - - - - - - - - -
16.6544 68000 0.4584 - - - - - - - - - - - - - - -
16.7524 68400 0.4587 - - - - - - - - - - - - - - -
16.8504 68800 0.4612 - - - - - - - - - - - - - - -
16.9483 69200 0.4625 - - - - - - - - - - - - - - -
17.0 69411 - 2.0769 0.6490 0.3571 0.7061 0.5707 - - - - - - - - - -
17.0463 69600 0.4519 - - - - - - - - - - - - - - -
17.1443 70000 0.4297 - - - - - - - - - - - - - - -
17.2422 70400 0.4355 - - - - - - - - - - - - - - -
17.3402 70800 0.4387 - - - - - - - - - - - - - - -
17.4382 71200 0.437 - - - - - - - - - - - - - - -
17.5361 71600 0.439 - - - - - - - - - - - - - - -
17.6341 72000 0.433 - - - - - - - - - - - - - - -
17.7321 72400 0.4411 - - - - - - - - - - - - - - -
17.8300 72800 0.435 - - - - - - - - - - - - - - -
17.9280 73200 0.4452 - - - - - - - - - - - - - - -
18.0 73494 - 2.0449 0.6553 0.3542 0.7062 0.5719 - - - - - - - - - -
18.0260 73600 0.4342 - - - - - - - - - - - - - - -
18.1239 74000 0.4147 - - - - - - - - - - - - - - -
18.2219 74400 0.4137 - - - - - - - - - - - - - - -
18.3199 74800 0.4158 - - - - - - - - - - - - - - -
18.4178 75200 0.4161 - - - - - - - - - - - - - - -
18.5158 75600 0.4152 - - - - - - - - - - - - - - -
18.6138 76000 0.4198 - - - - - - - - - - - - - - -
18.7117 76400 0.4204 - - - - - - - - - - - - - - -
18.8097 76800 0.4179 - - - - - - - - - - - - - - -
18.9077 77200 0.4182 - - - - - - - - - - - - - - -
19.0 77577 - 2.0543 0.6484 0.3547 0.6994 0.5675 - - - - - - - - - -
19.0056 77600 0.4168 - - - - - - - - - - - - - - -
19.1036 78000 0.3969 - - - - - - - - - - - - - - -
19.2016 78400 0.4014 - - - - - - - - - - - - - - -
19.2995 78800 0.3979 - - - - - - - - - - - - - - -
19.3975 79200 0.3989 - - - - - - - - - - - - - - -
19.4955 79600 0.401 - - - - - - - - - - - - - - -
19.5934 80000 0.3991 - - - - - - - - - - - - - - -
19.6914 80400 0.4 - - - - - - - - - - - - - - -
19.7894 80800 0.4021 - - - - - - - - - - - - - - -
19.8873 81200 0.4024 - - - - - - - - - - - - - - -
19.9853 81600 0.4052 - - - - - - - - - - - - - - -
20.0 81660 - 2.0791 0.6495 0.3545 0.6999 0.5680 - - - - - - - - - -
20.0833 82000 0.3812 - - - - - - - - - - - - - - -
20.1812 82400 0.3809 - - - - - - - - - - - - - - -
20.2792 82800 0.3831 - - - - - - - - - - - - - - -
20.3772 83200 0.3845 - - - - - - - - - - - - - - -
20.4751 83600 0.3828 - - - - - - - - - - - - - - -
20.5731 84000 0.3829 - - - - - - - - - - - - - - -
20.6711 84400 0.3839 - - - - - - - - - - - - - - -
20.7690 84800 0.3869 - - - - - - - - - - - - - - -
20.8670 85200 0.3883 - - - - - - - - - - - - - - -
20.9650 85600 0.386 - - - - - - - - - - - - - - -
21.0 85743 - 2.0739 0.6378 0.3526 0.6996 0.5633 - - - - - - - - - -
21.0629 86000 0.3706 - - - - - - - - - - - - - - -
21.1609 86400 0.3686 - - - - - - - - - - - - - - -
21.2589 86800 0.3654 - - - - - - - - - - - - - - -
21.3568 87200 0.372 - - - - - - - - - - - - - - -
21.4548 87600 0.3696 - - - - - - - - - - - - - - -
21.5528 88000 0.3692 - - - - - - - - - - - - - - -
21.6507 88400 0.37 - - - - - - - - - - - - - - -
21.7487 88800 0.3719 - - - - - - - - - - - - - - -
21.8467 89200 0.3754 - - - - - - - - - - - - - - -
21.9446 89600 0.3746 - - - - - - - - - - - - - - -
22.0 89826 - 2.0893 0.6433 0.3524 0.7000 0.5653 - - - - - - - - - -
22.0426 90000 0.3642 - - - - - - - - - - - - - - -
22.1406 90400 0.3536 - - - - - - - - - - - - - - -
22.2386 90800 0.3547 - - - - - - - - - - - - - - -
22.3365 91200 0.3539 - - - - - - - - - - - - - - -
22.4345 91600 0.3538 - - - - - - - - - - - - - - -
22.5325 92000 0.3596 - - - - - - - - - - - - - - -
22.6304 92400 0.3572 - - - - - - - - - - - - - - -
22.7284 92800 0.3604 - - - - - - - - - - - - - - -
22.8264 93200 0.3575 - - - - - - - - - - - - - - -
22.9243 93600 0.3591 - - - - - - - - - - - - - - -
23.0 93909 - 2.0807 0.6458 0.3558 0.6872 0.5629 - - - - - - - - - -
23.0223 94000 0.3515 - - - - - - - - - - - - - - -
23.1203 94400 0.3432 - - - - - - - - - - - - - - -
23.2182 94800 0.3448 - - - - - - - - - - - - - - -
23.3162 95200 0.3453 - - - - - - - - - - - - - - -
23.4142 95600 0.3468 - - - - - - - - - - - - - - -
23.5121 96000 0.3443 - - - - - - - - - - - - - - -
23.6101 96400 0.3457 - - - - - - - - - - - - - - -
23.7081 96800 0.3459 - - - - - - - - - - - - - - -
23.8060 97200 0.346 - - - - - - - - - - - - - - -
23.9040 97600 0.3462 - - - - - - - - - - - - - - -
24.0 97992 - 2.0896 0.6445 0.3547 0.6967 0.5653 - - - - - - - - - -
24.0020 98000 0.3452 - - - - - - - - - - - - - - -
24.0999 98400 0.3366 - - - - - - - - - - - - - - -
24.1979 98800 0.3341 - - - - - - - - - - - - - - -
24.2959 99200 0.3317 - - - - - - - - - - - - - - -
24.3938 99600 0.3345 - - - - - - - - - - - - - - -
24.4918 100000 0.3347 - - - - - - - - - - - - - - -
24.5898 100400 0.3371 - - - - - - - - - - - - - - -
24.6877 100800 0.3364 - - - - - - - - - - - - - - -
24.7857 101200 0.3354 - - - - - - - - - - - - - - -
24.8837 101600 0.336 - - - - - - - - - - - - - - -
24.9816 102000 0.3346 - - - - - - - - - - - - - - -
25.0 102075 - 2.1040 0.6366 0.3614 0.6919 0.5633 - - - - - - - - - -
25.0796 102400 0.3247 - - - - - - - - - - - - - - -
25.1776 102800 0.3268 - - - - - - - - - - - - - - -
25.2755 103200 0.3218 - - - - - - - - - - - - - - -
25.3735 103600 0.3264 - - - - - - - - - - - - - - -
25.4715 104000 0.3256 - - - - - - - - - - - - - - -
25.5694 104400 0.3249 - - - - - - - - - - - - - - -
25.6674 104800 0.3263 - - - - - - - - - - - - - - -
25.7654 105200 0.3273 - - - - - - - - - - - - - - -
25.8633 105600 0.3263 - - - - - - - - - - - - - - -
25.9613 106000 0.3299 - - - - - - - - - - - - - - -
26.0 106158 - 2.1057 0.6505 0.3534 0.6897 0.5645 - - - - - - - - - -
26.0593 106400 0.3175 - - - - - - - - - - - - - - -
26.1572 106800 0.316 - - - - - - - - - - - - - - -
26.2552 107200 0.3155 - - - - - - - - - - - - - - -
26.3532 107600 0.3153 - - - - - - - - - - - - - - -
26.4511 108000 0.3165 - - - - - - - - - - - - - - -
26.5491 108400 0.3163 - - - - - - - - - - - - - - -
26.6471 108800 0.3164 - - - - - - - - - - - - - - -
26.7450 109200 0.3216 - - - - - - - - - - - - - - -
26.8430 109600 0.3186 - - - - - - - - - - - - - - -
26.9410 110000 0.3173 - - - - - - - - - - - - - - -
27.0 110241 - 2.1127 0.6377 0.3499 0.6968 0.5615 - - - - - - - - - -
27.0389 110400 0.315 - - - - - - - - - - - - - - -
27.1369 110800 0.3052 - - - - - - - - - - - - - - -
27.2349 111200 0.3063 - - - - - - - - - - - - - - -
27.3328 111600 0.3052 - - - - - - - - - - - - - - -
27.4308 112000 0.3091 - - - - - - - - - - - - - - -
27.5288 112400 0.3096 - - - - - - - - - - - - - - -
27.6267 112800 0.3084 - - - - - - - - - - - - - - -
27.7247 113200 0.3097 - - - - - - - - - - - - - - -
27.8227 113600 0.3108 - - - - - - - - - - - - - - -
27.9206 114000 0.3098 - - - - - - - - - - - - - - -
28.0 114324 - 2.1209 0.6504 0.3525 0.6904 0.5644 - - - - - - - - - -
28.0186 114400 0.3059 - - - - - - - - - - - - - - -
28.1166 114800 0.3007 - - - - - - - - - - - - - - -
28.2145 115200 0.302 - - - - - - - - - - - - - - -
28.3125 115600 0.3025 - - - - - - - - - - - - - - -
28.4105 116000 0.2988 - - - - - - - - - - - - - - -
28.5084 116400 0.3019 - - - - - - - - - - - - - - -
28.6064 116800 0.3027 - - - - - - - - - - - - - - -
28.7044 117200 0.3002 - - - - - - - - - - - - - - -
28.8024 117600 0.3027 - - - - - - - - - - - - - - -
28.9003 118000 0.302 - - - - - - - - - - - - - - -
28.9983 118400 0.3025 - - - - - - - - - - - - - - -
29.0 118407 - 2.1126 0.6565 0.3536 0.6922 0.5674 - - - - - - - - - -
29.0963 118800 0.294 - - - - - - - - - - - - - - -
29.1942 119200 0.2934 - - - - - - - - - - - - - - -
29.2922 119600 0.2971 - - - - - - - - - - - - - - -
29.3902 120000 0.2962 - - - - - - - - - - - - - - -
29.4881 120400 0.2936 - - - - - - - - - - - - - - -
29.5861 120800 0.2935 - - - - - - - - - - - - - - -
29.6841 121200 0.2943 - - - - - - - - - - - - - - -
29.7820 121600 0.2919 - - - - - - - - - - - - - - -
29.8800 122000 0.2942 - - - - - - - - - - - - - - -
29.9780 122400 0.2957 - - - - - - - - - - - - - - -
30.0 122490 - 2.1210 0.6491 0.3531 0.6910 0.5644 - - - - - - - - - -
30.0759 122800 0.2922 - - - - - - - - - - - - - - -
30.1739 123200 0.2889 - - - - - - - - - - - - - - -
30.2719 123600 0.2891 - - - - - - - - - - - - - - -
30.3698 124000 0.2907 - - - - - - - - - - - - - - -
30.4678 124400 0.2892 - - - - - - - - - - - - - - -
30.5658 124800 0.289 - - - - - - - - - - - - - - -
30.6637 125200 0.2884 - - - - - - - - - - - - - - -
30.7617 125600 0.2888 - - - - - - - - - - - - - - -
30.8597 126000 0.2893 - - - - - - - - - - - - - - -
30.9576 126400 0.2883 - - - - - - - - - - - - - - -
31.0 126573 - 2.1149 0.6447 0.3526 0.6919 0.5630 - - - - - - - - - -
31.0556 126800 0.2865 - - - - - - - - - - - - - - -
31.1536 127200 0.284 - - - - - - - - - - - - - - -
31.2515 127600 0.2839 - - - - - - - - - - - - - - -
31.3495 128000 0.284 - - - - - - - - - - - - - - -
31.4475 128400 0.2839 - - - - - - - - - - - - - - -
31.5454 128800 0.2831 - - - - - - - - - - - - - - -
31.6434 129200 0.284 - - - - - - - - - - - - - - -
31.7414 129600 0.2836 - - - - - - - - - - - - - - -
31.8393 130000 0.2844 - - - - - - - - - - - - - - -
31.9373 130400 0.2862 - - - - - - - - - - - - - - -
32.0 130656 - 2.1219 0.6496 0.3516 0.6945 0.5652 - - - - - - - - - -
32.0353 130800 0.282 - - - - - - - - - - - - - - -
32.1332 131200 0.2795 - - - - - - - - - - - - - - -
32.2312 131600 0.2792 - - - - - - - - - - - - - - -
32.3292 132000 0.2813 - - - - - - - - - - - - - - -
32.4271 132400 0.2798 - - - - - - - - - - - - - - -
32.5251 132800 0.2801 - - - - - - - - - - - - - - -
32.6231 133200 0.2773 - - - - - - - - - - - - - - -
32.7210 133600 0.28 - - - - - - - - - - - - - - -
32.8190 134000 0.2789 - - - - - - - - - - - - - - -
32.9170 134400 0.2812 - - - - - - - - - - - - - - -
33.0 134739 - 2.1282 0.6433 0.3519 0.6907 0.5620 - - - - - - - - - -
33.0149 134800 0.278 - - - - - - - - - - - - - - -
33.1129 135200 0.2763 - - - - - - - - - - - - - - -
33.2109 135600 0.2771 - - - - - - - - - - - - - - -
33.3088 136000 0.2755 - - - - - - - - - - - - - - -
33.4068 136400 0.2763 - - - - - - - - - - - - - - -
33.5048 136800 0.2748 - - - - - - - - - - - - - - -
33.6027 137200 0.2761 - - - - - - - - - - - - - - -
33.7007 137600 0.276 - - - - - - - - - - - - - - -
33.7987 138000 0.2779 - - - - - - - - - - - - - - -
33.8966 138400 0.2744 - - - - - - - - - - - - - - -
33.9946 138800 0.2766 - - - - - - - - - - - - - - -
34.0 138822 - 2.1325 0.6510 0.3507 0.6907 0.5641 - - - - - - - - - -
34.0926 139200 0.275 - - - - - - - - - - - - - - -
34.1905 139600 0.2724 - - - - - - - - - - - - - - -
34.2885 140000 0.2726 - - - - - - - - - - - - - - -
34.3865 140400 0.2735 - - - - - - - - - - - - - - -
34.4844 140800 0.2717 - - - - - - - - - - - - - - -
34.5824 141200 0.2736 - - - - - - - - - - - - - - -
34.6804 141600 0.272 - - - - - - - - - - - - - - -
34.7783 142000 0.2713 - - - - - - - - - - - - - - -
34.8763 142400 0.2738 - - - - - - - - - - - - - - -
34.9743 142800 0.2715 - - - - - - - - - - - - - - -
35.0 142905 - 2.1323 0.6510 0.3530 0.6910 0.5650 - - - - - - - - - -
-1 -1 - - 0.6831 0.3577 0.7016 0.6002 0.2825 0.6615 0.9134 0.4345 0.7989 0.8858 0.3390 0.4614 0.6885 0.5945
  • The bold row denotes the saved checkpoint.

Framework Versions

  • Python: 3.13.3
  • Sentence Transformers: 5.1.0.dev0
  • Transformers: 4.53.2
  • PyTorch: 2.7.1+cu126
  • Accelerate: 1.9.0
  • Datasets: 3.6.0
  • Tokenizers: 0.21.2

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

SpladeLoss

@misc{formal2022distillationhardnegativesampling,
      title={From Distillation to Hard Negative Sampling: Making Sparse Neural IR Models More Effective},
      author={Thibault Formal and Carlos Lassance and Benjamin Piwowarski and Stéphane Clinchant},
      year={2022},
      eprint={2205.04733},
      archivePrefix={arXiv},
      primaryClass={cs.IR},
      url={https://arxiv.org/abs/2205.04733},
}

SparseMarginMSELoss

@misc{hofstätter2021improving,
    title={Improving Efficient Neural Ranking Models with Cross-Architecture Knowledge Distillation},
    author={Sebastian Hofstätter and Sophia Althammer and Michael Schröder and Mete Sertkan and Allan Hanbury},
    year={2021},
    eprint={2010.02666},
    archivePrefix={arXiv},
    primaryClass={cs.IR}
}

FlopsLoss

@article{paria2020minimizing,
    title={Minimizing flops to learn efficient sparse representations},
    author={Paria, Biswajit and Yeh, Chih-Kuan and Yen, Ian EH and Xu, Ning and Ravikumar, Pradeep and P{'o}czos, Barnab{'a}s},
    journal={arXiv preprint arXiv:2004.05665},
    year={2020}
}
Downloads last month
4
Safetensors
Model size
110M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for arthurbresnu/splade-co-condenser-marco-msmarco-margin-mse-1-bs_128-lr_2e-05-lq_0.1-ld_0.08

Finetuned
(22)
this model

Evaluation results