arthurcollet/Mellum-4b-base-mlx
This model arthurcollet/Mellum-4b-base-mlx was converted to MLX format from JetBrains/Mellum-4b-base using mlx-lm version 0.25.2.
Use with mlx
pip install mlx-lm
from mlx_lm import load, generate
model, tokenizer = load("arthurcollet/Mellum-4b-base-mlx")
prompt = "hello"
if tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)
- Downloads last month
- 0
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for arthurcollet/Mellum-4b-base-mlx-6bit
Base model
JetBrains/Mellum-4b-baseDatasets used to train arthurcollet/Mellum-4b-base-mlx-6bit
Evaluation results
- EM on RepoBench 1.1 (Python)self-reported0.259
- EM ≤ 8k on RepoBench 1.1 (Python)self-reported0.280
- EM on RepoBench 1.1 (Python)self-reported0.282
- EM on RepoBench 1.1 (Python)self-reported0.280
- EM on RepoBench 1.1 (Python)self-reported0.278
- EM on RepoBench 1.1 (Python)self-reported0.245
- EM on RepoBench 1.1 (Python)self-reported0.211
- EM on RepoBench 1.1 (Java)self-reported0.286
- EM ≤ 8k on RepoBench 1.1 (Java)self-reported0.311
- EM on RepoBench 1.1 (Java)self-reported0.320