SentenceTransformer based on answerdotai/ModernBERT-base
This is a sentence-transformers model finetuned from answerdotai/ModernBERT-base. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: answerdotai/ModernBERT-base
- Maximum Sequence Length: 8192 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False, 'architecture': 'ModernBertModel'})
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("as-bessonov/reranker_searchengines_cos2")
# Run inference
sentences = [
'are there any csi shows still on?',
'Natalie Davis (a.k.a. "The Miniature Serial Killer") is a fictional character on the CBS crime drama CSI: Crime Scene Investigation, portrayed by Jessica Collins. The Miniature Killer was introduced in the seventh-season premiere; after a season-long arc, she was identified as Natalie Davis in the finale.',
'The answer is Ne. These 3 elements belong to the same period (row) with Ne having 1 more proton ( and electron) than F, which itself has one more proton ( and electron) than O. ... Hence, Ne has a smaller atomic radius.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities)
# tensor([[ 1.0000, 0.0462, -0.1366],
# [ 0.0462, 1.0000, 0.2051],
# [-0.1366, 0.2051, 1.0000]])
Training Details
Training Dataset
Unnamed Dataset
- Size: 1,966,986 training samples
- Columns:
sentence1
,sentence2
, andlabel
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 label type string string float details - min: 8 tokens
- mean: 12.03 tokens
- max: 22 tokens
- min: 12 tokens
- mean: 57.41 tokens
- max: 125 tokens
- min: 0.0
- mean: 0.18
- max: 1.0
- Samples:
sentence1 sentence2 label are socks safe for babies?
While you may be able to skip socks during summer, they're an essential layer during most months of the year. This is especially true during winter when thick socks can prevent hypothermia and illness. When you and baby leave the house in cold weather, always pack one or two extra pairs of socks in your diaper bag.
1.0
are socks safe for babies?
Crew socks: This is the most common length, but crew socks are far from average! This height falls in the middle of the calf and pairs well with any shoe. ... Trouser socks/tall socks/mid-calf socks: Trouser socks tend to be a bit higher than your average crew sock, but they don't completely cover the calf.
0.0
are socks safe for babies?
In fact Birkenstocks are almost made to be easily worn with socks. You can go with the outdoorsie wool and hiking socks in your basic earth colors or you can add some pizzaz and get some “statement” socks to spice it up a bit. ... So, yeah, you can wear socks with your Birks.
0.0
- Loss:
CosineSimilarityLoss
with these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Training Hyperparameters
Non-Default Hyperparameters
per_device_train_batch_size
: 512learning_rate
: 2e-05num_train_epochs
: 1warmup_ratio
: 0.1seed
: 12bf16
: Truedataloader_num_workers
: 4
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: noprediction_loss_only
: Trueper_device_train_batch_size
: 512per_device_eval_batch_size
: 8per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 1max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 12data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 4dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportionalrouter_mapping
: {}learning_rate_mapping
: {}
Training Logs
Click to expand
Epoch | Step | Training Loss |
---|---|---|
0.0026 | 10 | 0.6724 |
0.0052 | 20 | 0.6722 |
0.0078 | 30 | 0.6434 |
0.0104 | 40 | 0.613 |
0.0130 | 50 | 0.4804 |
0.0156 | 60 | 0.2451 |
0.0182 | 70 | 0.1604 |
0.0208 | 80 | 0.1501 |
0.0234 | 90 | 0.1533 |
0.0260 | 100 | 0.152 |
0.0286 | 110 | 0.1466 |
0.0312 | 120 | 0.1487 |
0.0338 | 130 | 0.1438 |
0.0364 | 140 | 0.1487 |
0.0390 | 150 | 0.1453 |
0.0416 | 160 | 0.1472 |
0.0442 | 170 | 0.143 |
0.0469 | 180 | 0.144 |
0.0495 | 190 | 0.1472 |
0.0521 | 200 | 0.1448 |
0.0547 | 210 | 0.1439 |
0.0573 | 220 | 0.1415 |
0.0599 | 230 | 0.1373 |
0.0625 | 240 | 0.1487 |
0.0651 | 250 | 0.1477 |
0.0677 | 260 | 0.1442 |
0.0703 | 270 | 0.1441 |
0.0729 | 280 | 0.1458 |
0.0755 | 290 | 0.1406 |
0.0781 | 300 | 0.1439 |
0.0807 | 310 | 0.1438 |
0.0833 | 320 | 0.1457 |
0.0859 | 330 | 0.1439 |
0.0885 | 340 | 0.1373 |
0.0911 | 350 | 0.1422 |
0.0937 | 360 | 0.1455 |
0.0963 | 370 | 0.1406 |
0.0989 | 380 | 0.1458 |
0.1015 | 390 | 0.1406 |
0.1041 | 400 | 0.1447 |
0.1067 | 410 | 0.1379 |
0.1093 | 420 | 0.1433 |
0.1119 | 430 | 0.1408 |
0.1145 | 440 | 0.1421 |
0.1171 | 450 | 0.1375 |
0.1197 | 460 | 0.1434 |
0.1223 | 470 | 0.1384 |
0.1249 | 480 | 0.1407 |
0.1275 | 490 | 0.1429 |
0.1301 | 500 | 0.1365 |
0.1327 | 510 | 0.1438 |
0.1353 | 520 | 0.1379 |
0.1379 | 530 | 0.1397 |
0.1406 | 540 | 0.1378 |
0.1432 | 550 | 0.143 |
0.1458 | 560 | 0.1368 |
0.1484 | 570 | 0.1408 |
0.1510 | 580 | 0.1424 |
0.1536 | 590 | 0.1361 |
0.1562 | 600 | 0.1396 |
0.1588 | 610 | 0.1349 |
0.1614 | 620 | 0.1347 |
0.1640 | 630 | 0.1328 |
0.1666 | 640 | 0.1389 |
0.1692 | 650 | 0.1297 |
0.1718 | 660 | 0.1331 |
0.1744 | 670 | 0.1309 |
0.1770 | 680 | 0.1348 |
0.1796 | 690 | 0.128 |
0.1822 | 700 | 0.1302 |
0.1848 | 710 | 0.1281 |
0.1874 | 720 | 0.1306 |
0.1900 | 730 | 0.1329 |
0.1926 | 740 | 0.1294 |
0.1952 | 750 | 0.1289 |
0.1978 | 760 | 0.1235 |
0.2004 | 770 | 0.1233 |
0.2030 | 780 | 0.1271 |
0.2056 | 790 | 0.1248 |
0.2082 | 800 | 0.1227 |
0.2108 | 810 | 0.1271 |
0.2134 | 820 | 0.1225 |
0.2160 | 830 | 0.1261 |
0.2186 | 840 | 0.128 |
0.2212 | 850 | 0.1238 |
0.2238 | 860 | 0.1283 |
0.2264 | 870 | 0.1281 |
0.2290 | 880 | 0.1291 |
0.2317 | 890 | 0.1275 |
0.2343 | 900 | 0.1285 |
0.2369 | 910 | 0.1262 |
0.2395 | 920 | 0.1184 |
0.2421 | 930 | 0.1205 |
0.2447 | 940 | 0.1228 |
0.2473 | 950 | 0.1281 |
0.2499 | 960 | 0.125 |
0.2525 | 970 | 0.1247 |
0.2551 | 980 | 0.1225 |
0.2577 | 990 | 0.1239 |
0.2603 | 1000 | 0.1228 |
0.2629 | 1010 | 0.1215 |
0.2655 | 1020 | 0.1211 |
0.2681 | 1030 | 0.1222 |
0.2707 | 1040 | 0.1242 |
0.2733 | 1050 | 0.1176 |
0.2759 | 1060 | 0.1208 |
0.2785 | 1070 | 0.1172 |
0.2811 | 1080 | 0.1234 |
0.2837 | 1090 | 0.1206 |
0.2863 | 1100 | 0.1202 |
0.2889 | 1110 | 0.116 |
0.2915 | 1120 | 0.117 |
0.2941 | 1130 | 0.1207 |
0.2967 | 1140 | 0.1214 |
0.2993 | 1150 | 0.1206 |
0.3019 | 1160 | 0.1183 |
0.3045 | 1170 | 0.1265 |
0.3071 | 1180 | 0.1225 |
0.3097 | 1190 | 0.1179 |
0.3123 | 1200 | 0.1205 |
0.3149 | 1210 | 0.1186 |
0.3175 | 1220 | 0.1199 |
0.3201 | 1230 | 0.1189 |
0.3227 | 1240 | 0.1142 |
0.3254 | 1250 | 0.1225 |
0.3280 | 1260 | 0.1206 |
0.3306 | 1270 | 0.1164 |
0.3332 | 1280 | 0.1208 |
0.3358 | 1290 | 0.1163 |
0.3384 | 1300 | 0.1148 |
0.3410 | 1310 | 0.1118 |
0.3436 | 1320 | 0.1174 |
0.3462 | 1330 | 0.1196 |
0.3488 | 1340 | 0.1128 |
0.3514 | 1350 | 0.1125 |
0.3540 | 1360 | 0.1108 |
0.3566 | 1370 | 0.114 |
0.3592 | 1380 | 0.1197 |
0.3618 | 1390 | 0.115 |
0.3644 | 1400 | 0.1158 |
0.3670 | 1410 | 0.1099 |
0.3696 | 1420 | 0.1122 |
0.3722 | 1430 | 0.1121 |
0.3748 | 1440 | 0.1133 |
0.3774 | 1450 | 0.1105 |
0.3800 | 1460 | 0.1163 |
0.3826 | 1470 | 0.1149 |
0.3852 | 1480 | 0.1119 |
0.3878 | 1490 | 0.112 |
0.3904 | 1500 | 0.1125 |
0.3930 | 1510 | 0.1182 |
0.3956 | 1520 | 0.11 |
0.3982 | 1530 | 0.1102 |
0.4008 | 1540 | 0.108 |
0.4034 | 1550 | 0.1109 |
0.4060 | 1560 | 0.1211 |
0.4086 | 1570 | 0.1123 |
0.4112 | 1580 | 0.1134 |
0.4138 | 1590 | 0.1157 |
0.4164 | 1600 | 0.1103 |
0.4191 | 1610 | 0.1146 |
0.4217 | 1620 | 0.1106 |
0.4243 | 1630 | 0.1141 |
0.4269 | 1640 | 0.1107 |
0.4295 | 1650 | 0.1132 |
0.4321 | 1660 | 0.1067 |
0.4347 | 1670 | 0.1136 |
0.4373 | 1680 | 0.1107 |
0.4399 | 1690 | 0.1103 |
0.4425 | 1700 | 0.1068 |
0.4451 | 1710 | 0.1118 |
0.4477 | 1720 | 0.1098 |
0.4503 | 1730 | 0.1113 |
0.4529 | 1740 | 0.1132 |
0.4555 | 1750 | 0.1136 |
0.4581 | 1760 | 0.1079 |
0.4607 | 1770 | 0.1124 |
0.4633 | 1780 | 0.1061 |
0.4659 | 1790 | 0.1099 |
0.4685 | 1800 | 0.1075 |
0.4711 | 1810 | 0.1097 |
0.4737 | 1820 | 0.1083 |
0.4763 | 1830 | 0.1117 |
0.4789 | 1840 | 0.1061 |
0.4815 | 1850 | 0.1076 |
0.4841 | 1860 | 0.1102 |
0.4867 | 1870 | 0.1098 |
0.4893 | 1880 | 0.1066 |
0.4919 | 1890 | 0.1082 |
0.4945 | 1900 | 0.1142 |
0.4971 | 1910 | 0.1081 |
0.4997 | 1920 | 0.1089 |
0.5023 | 1930 | 0.1076 |
0.5049 | 1940 | 0.1055 |
0.5075 | 1950 | 0.1097 |
0.5102 | 1960 | 0.105 |
0.5128 | 1970 | 0.1061 |
0.5154 | 1980 | 0.1064 |
0.5180 | 1990 | 0.111 |
0.5206 | 2000 | 0.1032 |
0.5232 | 2010 | 0.1061 |
0.5258 | 2020 | 0.1099 |
0.5284 | 2030 | 0.1093 |
0.5310 | 2040 | 0.1084 |
0.5336 | 2050 | 0.112 |
0.5362 | 2060 | 0.1034 |
0.5388 | 2070 | 0.1088 |
0.5414 | 2080 | 0.1067 |
0.5440 | 2090 | 0.1175 |
0.5466 | 2100 | 0.111 |
0.5492 | 2110 | 0.104 |
0.5518 | 2120 | 0.1081 |
0.5544 | 2130 | 0.1086 |
0.5570 | 2140 | 0.1045 |
0.5596 | 2150 | 0.106 |
0.5622 | 2160 | 0.1125 |
0.5648 | 2170 | 0.109 |
0.5674 | 2180 | 0.103 |
0.5700 | 2190 | 0.1035 |
0.5726 | 2200 | 0.1069 |
0.5752 | 2210 | 0.1077 |
0.5778 | 2220 | 0.1036 |
0.5804 | 2230 | 0.1099 |
0.5830 | 2240 | 0.1092 |
0.5856 | 2250 | 0.1028 |
0.5882 | 2260 | 0.1043 |
0.5908 | 2270 | 0.1054 |
0.5934 | 2280 | 0.1021 |
0.5960 | 2290 | 0.1078 |
0.5986 | 2300 | 0.1054 |
0.6012 | 2310 | 0.108 |
0.6039 | 2320 | 0.104 |
0.6065 | 2330 | 0.1028 |
0.6091 | 2340 | 0.1086 |
0.6117 | 2350 | 0.1061 |
0.6143 | 2360 | 0.1062 |
0.6169 | 2370 | 0.1082 |
0.6195 | 2380 | 0.1056 |
0.6221 | 2390 | 0.1043 |
0.6247 | 2400 | 0.1066 |
0.6273 | 2410 | 0.1091 |
0.6299 | 2420 | 0.1035 |
0.6325 | 2430 | 0.1058 |
0.6351 | 2440 | 0.1065 |
0.6377 | 2450 | 0.1055 |
0.6403 | 2460 | 0.1046 |
0.6429 | 2470 | 0.1011 |
0.6455 | 2480 | 0.1043 |
0.6481 | 2490 | 0.11 |
0.6507 | 2500 | 0.1029 |
0.6533 | 2510 | 0.1025 |
0.6559 | 2520 | 0.1052 |
0.6585 | 2530 | 0.1071 |
0.6611 | 2540 | 0.1065 |
0.6637 | 2550 | 0.1054 |
0.6663 | 2560 | 0.106 |
0.6689 | 2570 | 0.1075 |
0.6715 | 2580 | 0.1012 |
0.6741 | 2590 | 0.1049 |
0.6767 | 2600 | 0.1051 |
0.6793 | 2610 | 0.1013 |
0.6819 | 2620 | 0.0972 |
0.6845 | 2630 | 0.1102 |
0.6871 | 2640 | 0.106 |
0.6897 | 2650 | 0.1039 |
0.6923 | 2660 | 0.1066 |
0.6950 | 2670 | 0.1044 |
0.6976 | 2680 | 0.1036 |
0.7002 | 2690 | 0.1023 |
0.7028 | 2700 | 0.1024 |
0.7054 | 2710 | 0.1011 |
0.7080 | 2720 | 0.1021 |
0.7106 | 2730 | 0.106 |
0.7132 | 2740 | 0.1053 |
0.7158 | 2750 | 0.0988 |
0.7184 | 2760 | 0.1006 |
0.7210 | 2770 | 0.0983 |
0.7236 | 2780 | 0.1083 |
0.7262 | 2790 | 0.1042 |
0.7288 | 2800 | 0.1045 |
0.7314 | 2810 | 0.1025 |
0.7340 | 2820 | 0.1066 |
0.7366 | 2830 | 0.1019 |
0.7392 | 2840 | 0.1023 |
0.7418 | 2850 | 0.1007 |
0.7444 | 2860 | 0.1033 |
0.7470 | 2870 | 0.1056 |
0.7496 | 2880 | 0.1008 |
0.7522 | 2890 | 0.1027 |
0.7548 | 2900 | 0.1045 |
0.7574 | 2910 | 0.1003 |
0.7600 | 2920 | 0.1063 |
0.7626 | 2930 | 0.1081 |
0.7652 | 2940 | 0.1002 |
0.7678 | 2950 | 0.1021 |
0.7704 | 2960 | 0.1003 |
0.7730 | 2970 | 0.1015 |
0.7756 | 2980 | 0.104 |
0.7782 | 2990 | 0.1049 |
0.7808 | 3000 | 0.1034 |
0.7834 | 3010 | 0.1021 |
0.7860 | 3020 | 0.0998 |
0.7887 | 3030 | 0.0965 |
0.7913 | 3040 | 0.1059 |
0.7939 | 3050 | 0.1045 |
0.7965 | 3060 | 0.1029 |
0.7991 | 3070 | 0.1028 |
0.8017 | 3080 | 0.1019 |
0.8043 | 3090 | 0.104 |
0.8069 | 3100 | 0.101 |
0.8095 | 3110 | 0.103 |
0.8121 | 3120 | 0.1001 |
0.8147 | 3130 | 0.1 |
0.8173 | 3140 | 0.1042 |
0.8199 | 3150 | 0.1039 |
0.8225 | 3160 | 0.104 |
0.8251 | 3170 | 0.1031 |
0.8277 | 3180 | 0.1045 |
0.8303 | 3190 | 0.1018 |
0.8329 | 3200 | 0.1006 |
0.8355 | 3210 | 0.1011 |
0.8381 | 3220 | 0.1028 |
0.8407 | 3230 | 0.0964 |
0.8433 | 3240 | 0.1027 |
0.8459 | 3250 | 0.098 |
0.8485 | 3260 | 0.1001 |
0.8511 | 3270 | 0.1014 |
0.8537 | 3280 | 0.1027 |
0.8563 | 3290 | 0.0999 |
0.8589 | 3300 | 0.1013 |
0.8615 | 3310 | 0.1014 |
0.8641 | 3320 | 0.1023 |
0.8667 | 3330 | 0.1038 |
0.8693 | 3340 | 0.0993 |
0.8719 | 3350 | 0.1011 |
0.8745 | 3360 | 0.1054 |
0.8771 | 3370 | 0.1003 |
0.8798 | 3380 | 0.1012 |
0.8824 | 3390 | 0.1015 |
0.8850 | 3400 | 0.1023 |
0.8876 | 3410 | 0.1026 |
0.8902 | 3420 | 0.1003 |
0.8928 | 3430 | 0.0989 |
0.8954 | 3440 | 0.1045 |
0.8980 | 3450 | 0.1039 |
0.9006 | 3460 | 0.0998 |
0.9032 | 3470 | 0.1038 |
0.9058 | 3480 | 0.1012 |
0.9084 | 3490 | 0.1023 |
0.9110 | 3500 | 0.1001 |
0.9136 | 3510 | 0.1058 |
0.9162 | 3520 | 0.1042 |
0.9188 | 3530 | 0.0995 |
0.9214 | 3540 | 0.0988 |
0.9240 | 3550 | 0.0996 |
0.9266 | 3560 | 0.1008 |
0.9292 | 3570 | 0.1016 |
0.9318 | 3580 | 0.1052 |
0.9344 | 3590 | 0.1038 |
0.9370 | 3600 | 0.1014 |
0.9396 | 3610 | 0.1018 |
0.9422 | 3620 | 0.0987 |
0.9448 | 3630 | 0.1021 |
0.9474 | 3640 | 0.1015 |
0.9500 | 3650 | 0.0983 |
0.9526 | 3660 | 0.1022 |
0.9552 | 3670 | 0.1075 |
0.9578 | 3680 | 0.1049 |
0.9604 | 3690 | 0.0993 |
0.9630 | 3700 | 0.1014 |
0.9656 | 3710 | 0.0984 |
0.9682 | 3720 | 0.0963 |
0.9708 | 3730 | 0.1052 |
0.9735 | 3740 | 0.0958 |
0.9761 | 3750 | 0.1003 |
0.9787 | 3760 | 0.1046 |
0.9813 | 3770 | 0.1044 |
0.9839 | 3780 | 0.1036 |
0.9865 | 3790 | 0.1027 |
0.9891 | 3800 | 0.1006 |
0.9917 | 3810 | 0.1023 |
0.9943 | 3820 | 0.0992 |
0.9969 | 3830 | 0.1014 |
0.9995 | 3840 | 0.1008 |
Framework Versions
- Python: 3.12.3
- Sentence Transformers: 5.0.0
- Transformers: 4.52.4
- PyTorch: 2.7.0a0+79aa17489c.nv25.04
- Accelerate: 1.8.1
- Datasets: 3.6.0
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
- Downloads last month
- 40
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for as-bessonov/reranker_searchengines_cos2
Base model
answerdotai/ModernBERT-base