segformer-breastcancer

This model is a fine-tuned version of nvidia/segformer-b0-finetuned-ade-512-512 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1986
  • Mean Iou: 0.4951
  • Mean Accuracy: 0.5647
  • Overall Accuracy: 0.5716
  • Per Category Iou: [0.41886373003284666, 0.5713219432574086]
  • Per Category Accuracy: [0.542773911636187, 0.5866474640793707]

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 6e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Mean Iou Mean Accuracy Overall Accuracy Per Category Iou Per Category Accuracy
0.9179 1.25 20 0.8275 0.1056 0.2990 0.2215 [0.15928433223106872, 0.05189369644942194] [0.5449101796407185, 0.053152424747755486]
0.7951 2.5 40 0.7554 0.3808 0.6154 0.6539 [0.2962250026735109, 0.46535774064135604] [0.4931218643793494, 0.7375983290380178]
0.6317 3.75 60 0.5784 0.2076 0.3576 0.3005 [0.24602488191071786, 0.16910477266308951] [0.5386308464152776, 0.17651220374955784]
0.5525 5.0 80 0.4935 0.3310 0.4279 0.3908 [0.3572223576675606, 0.30487703968490387] [0.5453956950962939, 0.31031549514039786]
0.4365 6.25 100 0.4277 0.4259 0.5007 0.5093 [0.3753112405986087, 0.4765198093920762] [0.473248098397799, 0.528071150639244]
0.3658 7.5 120 0.3757 0.3739 0.4207 0.4501 [0.2934911929427469, 0.45430117531467024] [0.32736688784592977, 0.5140397864133273]
0.357 8.75 140 0.3155 0.4305 0.5273 0.5652 [0.31276016750127367, 0.5482260296446353] [0.40734746722770676, 0.6473124799973049]
0.2889 10.0 160 0.3121 0.4761 0.5439 0.5495 [0.39972203089638886, 0.5525428502787649] [0.5259588930247613, 0.56174305590648]
0.2536 11.25 180 0.2611 0.4607 0.5411 0.5586 [0.37248963582652733, 0.5489196143472734] [0.4856772940605276, 0.5965098455370829]
0.3375 12.5 200 0.2522 0.3905 0.4676 0.4535 [0.3615823724169426, 0.4193968866718472] [0.512558666450882, 0.4227348526959422]
0.1835 13.75 220 0.2393 0.4343 0.4809 0.5004 [0.3816968232451229, 0.4869246466631396] [0.41924259588930246, 0.5425994239223811]
0.1878 15.0 240 0.2364 0.3883 0.4769 0.4591 [0.3594858252766199, 0.4170536161683648] [0.5331607056157954, 0.42058719490626106]
0.1804 16.25 260 0.2388 0.3503 0.4221 0.3934 [0.3722368961671656, 0.3283766624340039] [0.5131736526946108, 0.3310593427324945]
0.2296 17.5 280 0.2108 0.3845 0.4523 0.4383 [0.36382381172455475, 0.4051134890024848] [0.4968765172357987, 0.40781915879192143]
0.1752 18.75 300 0.2065 0.4408 0.5307 0.5278 [0.37362255868123995, 0.5080655748465653] [0.539941738145331, 0.5215102666464534]
0.1404 20.0 320 0.2025 0.4192 0.5049 0.4948 [0.37603680369849973, 0.4624047452321127] [0.5370771969574365, 0.4727289571647548]
0.1044 21.25 340 0.1993 0.4134 0.5006 0.4938 [0.36164057945015027, 0.46514651056315] [0.5219938501375627, 0.4791635083463877]
0.1047 22.5 360 0.1995 0.4409 0.5612 0.5654 [0.35316826827766823, 0.5286988461568266] [0.5477909046771322, 0.5746205804571564]
0.0969 23.75 380 0.1934 0.4208 0.5256 0.5171 [0.3610564616784075, 0.480532337904731] [0.5524356692021363, 0.49872824970101237]
0.1198 25.0 400 0.2100 0.4047 0.4892 0.4726 [0.377810637529348, 0.43159533203482664] [0.5416895937854022, 0.4366988394225748]
0.116 26.25 420 0.2038 0.4208 0.5123 0.5040 [0.3659432240473206, 0.47558361909786334] [0.5386632141123159, 0.48590968046220967]
0.0803 27.5 440 0.2035 0.4643 0.5486 0.5520 [0.3885018236229309, 0.5400125204269953] [0.537854021686357, 0.5594101099937676]
0.1031 28.75 460 0.2068 0.4193 0.5268 0.5199 [0.3565531095848628, 0.48207738324971056] [0.5486324648001295, 0.5049522461973824]
0.0652 30.0 480 0.1906 0.4799 0.5572 0.5719 [0.39256244632789455, 0.5671483599490623] [0.5104709499919081, 0.6039045260835144]
0.0865 31.25 500 0.1946 0.4660 0.5319 0.5360 [0.4022848534304187, 0.5297039831736081] [0.5185952419485353, 0.5451176579581248]
0.0781 32.5 520 0.2018 0.4170 0.4977 0.4881 [0.37508619500758517, 0.4588260589120619] [0.5281922641204079, 0.46729664628497314]
0.0922 33.75 540 0.1932 0.4649 0.5558 0.5608 [0.39512968947922955, 0.5346638407173079] [0.5401683120245995, 0.571521215490087]
0.0802 35.0 560 0.2029 0.4519 0.5364 0.5344 [0.3877223005943433, 0.5161263869184783] [0.5426606246965529, 0.5300756312429464]
0.0737 36.25 580 0.1983 0.4605 0.5598 0.5666 [0.3930664524057094, 0.5280028151990147] [0.5383719048389707, 0.5812993750736941]
0.0766 37.5 600 0.2097 0.4902 0.5645 0.5701 [0.41298901286924217, 0.5674679408239331] [0.5468846091600582, 0.5821500160021561]
0.0663 38.75 620 0.1926 0.5041 0.5653 0.5781 [0.42229021548076295, 0.5859655697770101] [0.5249069428710147, 0.6057405629390065]
0.0572 40.0 640 0.1944 0.4884 0.5550 0.5643 [0.41379925802215733, 0.5630840363400389] [0.525295355235475, 0.5846429834756683]
0.1065 41.25 660 0.1949 0.4713 0.5603 0.5687 [0.4052270716602772, 0.537297205601135] [0.5337271403139666, 0.5868664409520441]
0.0881 42.5 680 0.1945 0.4557 0.5355 0.5362 [0.38861418270649184, 0.5228113541121006] [0.5329341317365269, 0.5379672208465983]
0.0616 43.75 700 0.2055 0.4851 0.5479 0.5493 [0.4288067420034476, 0.5413945423770796] [0.543486000971031, 0.5522512506948305]
0.135 45.0 720 0.2017 0.4950 0.5702 0.5770 [0.4186215922560253, 0.5714192766576933] [0.5487133840427254, 0.5917428874627318]
0.0683 46.25 740 0.1986 0.4880 0.5579 0.5633 [0.41617258731503165, 0.5599071727881785] [0.5407347467227707, 0.5750585342025031]
0.0962 47.5 760 0.2010 0.4907 0.5660 0.5730 [0.41037067786677084, 0.571094427269902] [0.543955332578087, 0.5881213468762106]
0.0534 48.75 780 0.2061 0.4941 0.5671 0.5740 [0.4158937943809818, 0.5723742349360128] [0.5450234665803528, 0.5891404315528829]
0.069 50.0 800 0.1986 0.4951 0.5647 0.5716 [0.41886373003284666, 0.5713219432574086] [0.542773911636187, 0.5866474640793707]

Framework versions

  • Transformers 4.38.2
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2
Downloads last month
16
Safetensors
Model size
3.72M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for as-cle-bert/segformer-breastcancer

Finetuned
(41)
this model

Dataset used to train as-cle-bert/segformer-breastcancer