Edit model card

layoutlmv2-base-uncased_finetuned_docvqa

This model is a fine-tuned version of microsoft/layoutlmv2-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 2.9710

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss
6.12 0.0221 5 5.8130
5.8642 0.0442 10 5.5440
5.739 0.0664 15 5.3407
5.24 0.0885 20 5.1918
5.2382 0.1106 25 5.0621
5.0044 0.1327 30 4.9099
4.8735 0.1549 35 4.7621
4.5752 0.1770 40 4.7436
4.9789 0.1991 45 4.6436
5.3167 0.2212 50 4.5981
5.1172 0.2434 55 4.6847
4.7205 0.2655 60 4.5649
4.5686 0.2876 65 4.5079
4.774 0.3097 70 4.3704
4.2153 0.3319 75 4.3057
4.5881 0.3540 80 4.2297
4.4437 0.3761 85 4.2064
4.1528 0.3982 90 4.1870
4.2176 0.4204 95 4.2060
4.145 0.4425 100 4.1738
4.487 0.4646 105 4.1157
4.215 0.4867 110 4.1209
4.2117 0.5088 115 4.0113
4.2441 0.5310 120 3.9862
3.8206 0.5531 125 4.0846
4.418 0.5752 130 3.9696
3.8883 0.5973 135 3.9478
3.9334 0.6195 140 3.9126
4.2097 0.6416 145 3.8813
4.0268 0.6637 150 3.9252
4.126 0.6858 155 3.8643
4.0452 0.7080 160 3.9387
3.9409 0.7301 165 3.8127
3.9958 0.7522 170 3.7989
3.8162 0.7743 175 3.8034
3.5596 0.7965 180 3.8704
4.081 0.8186 185 3.7822
4.1374 0.8407 190 3.7431
4.1355 0.8628 195 3.7494
4.0031 0.8850 200 3.7118
4.0624 0.9071 205 3.8061
3.7152 0.9292 210 3.7471
4.301 0.9513 215 3.9199
4.0595 0.9735 220 3.7722
4.1836 0.9956 225 3.6203
3.6276 1.0177 230 3.6073
3.4787 1.0398 235 3.5770
3.3633 1.0619 240 3.5469
3.2999 1.0841 245 3.6939
3.4353 1.1062 250 3.7339
3.663 1.1283 255 3.5301
3.283 1.1504 260 3.5172
3.5445 1.1726 265 3.5076
3.1999 1.1947 270 3.5342
3.4036 1.2168 275 3.4955
3.31 1.2389 280 3.4295
3.3661 1.2611 285 3.4398
3.2727 1.2832 290 3.4223
3.3522 1.3053 295 3.4298
3.1652 1.3274 300 3.4076
2.9084 1.3496 305 3.3806
3.2943 1.3717 310 3.3692
3.2965 1.3938 315 3.3601
3.2069 1.4159 320 3.3893
3.285 1.4381 325 3.4980
3.1824 1.4602 330 3.4643
3.4277 1.4823 335 3.3506
3.1088 1.5044 340 3.2569
3.1225 1.5265 345 3.2182
2.9275 1.5487 350 3.3265
3.0438 1.5708 355 3.3541
3.2014 1.5929 360 3.2822
3.0306 1.6150 365 3.2362
2.9716 1.6372 370 3.2018
3.0015 1.6593 375 3.1488
2.8433 1.6814 380 3.1138
3.0251 1.7035 385 3.0836
3.0188 1.7257 390 3.1137
2.8269 1.7478 395 3.1072
3.2609 1.7699 400 3.1077
2.8849 1.7920 405 3.1659
2.6843 1.8142 410 3.2268
2.9859 1.8363 415 3.2020
2.5574 1.8584 420 3.1025
2.9709 1.8805 425 3.1188
3.1064 1.9027 430 3.0549
2.7347 1.9248 435 2.9965
2.6075 1.9469 440 2.9799
2.9998 1.9690 445 3.0093
2.4259 1.9912 450 3.1338
2.5547 2.0133 455 3.3225
2.9147 2.0354 460 3.3662
3.004 2.0575 465 3.2570
2.4481 2.0796 470 3.1761
2.5156 2.1018 475 3.1332
2.5695 2.1239 480 3.0219
2.3243 2.1460 485 3.0122
2.4268 2.1681 490 3.0692
2.3157 2.1903 495 3.1625
2.6856 2.2124 500 3.1868
2.3567 2.2345 505 3.1789
2.3799 2.2566 510 3.1141
2.3814 2.2788 515 3.0845
2.6517 2.3009 520 3.0001
2.8808 2.3230 525 2.9786
2.2501 2.3451 530 3.0351
2.4319 2.3673 535 3.0998
2.4569 2.3894 540 3.1180
2.1893 2.4115 545 3.0840
2.5029 2.4336 550 3.0379
2.5414 2.4558 555 2.9775
2.414 2.4779 560 2.9478
2.4732 2.5 565 2.9530
2.7319 2.5221 570 2.9462
2.3984 2.5442 575 2.9199
2.1631 2.5664 580 2.9257
2.1815 2.5885 585 2.9564
2.4294 2.6106 590 2.9570
2.298 2.6327 595 2.9290
2.2535 2.6549 600 2.9287
2.1774 2.6770 605 2.9196
2.2014 2.6991 610 2.9162
2.1422 2.7212 615 2.9466
2.494 2.7434 620 2.9844
2.6516 2.7655 625 2.9899
2.1923 2.7876 630 2.9580
2.3944 2.8097 635 2.9432
2.0892 2.8319 640 2.9422
2.129 2.8540 645 2.9597
2.4273 2.8761 650 2.9647
2.1467 2.8982 655 2.9614
2.1653 2.9204 660 2.9596
2.1992 2.9425 665 2.9642
2.1921 2.9646 670 2.9702
2.2585 2.9867 675 2.9710

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.0+cu121
  • Datasets 3.0.0
  • Tokenizers 0.19.1
Downloads last month
10
Safetensors
Model size
200M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for ashaduzzaman/layoutlmv2-base-uncased_finetuned_docvqa

Finetuned
(62)
this model