SentenceTransformer based on ashercn97/medicalai_ClinicalBERT-2025-04-11_22-11-59
This is a sentence-transformers model finetuned from ashercn97/medicalai_ClinicalBERT-2025-04-11_22-11-59. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: ashercn97/medicalai_ClinicalBERT-2025-04-11_22-11-59
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DistilBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': False})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the ๐ค Hub
model = SentenceTransformer("ashercn97/medical-v003")
# Run inference
sentences = [
'description: Bronchiectasis',
'description: Bronchiectasis, uncomplicated',
'description: Acute on chronic systolic (congestive) heart failure',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Dataset
Unnamed Dataset
- Size: 389,269 training samples
- Columns:
primary_code
anddescription
- Approximate statistics based on the first 1000 samples:
primary_code description type string string details - min: 5 tokens
- mean: 7.63 tokens
- max: 27 tokens
- min: 6 tokens
- mean: 16.73 tokens
- max: 69 tokens
- Samples:
primary_code description code: 137120
description: RADIAL HEAD MOD 10X22MM
description: LVEF 50-55%
description: Unspecified systolic (congestive) heart failure
code: 510347
description: MAG-AL UD (MAALOX)
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Evaluation Dataset
Unnamed Dataset
- Size: 10,000 evaluation samples
- Columns:
primary_code
anddescription
- Approximate statistics based on the first 1000 samples:
primary_code description type string string details - min: 5 tokens
- mean: 7.67 tokens
- max: 37 tokens
- min: 5 tokens
- mean: 16.22 tokens
- max: 64 tokens
- Samples:
primary_code description description: Psoriasis
description: Psoriasis, unspecified
description: Hodgkin Lymphoma
description: Hodgkin lymphoma, unspecified, unspecified site
description: Cancer-related pain control plan
description: Neoplasm related pain (acute) (chronic)
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 512per_device_eval_batch_size
: 512learning_rate
: 2e-05weight_decay
: 0.01num_train_epochs
: 2lr_scheduler_type
: cosinewarmup_ratio
: 0.1seed
: 12bf16
: Truedataloader_num_workers
: 64dataloader_prefetch_factor
: 5batch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 512per_device_eval_batch_size
: 512per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.01adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 2max_steps
: -1lr_scheduler_type
: cosinelr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 12data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 64dataloader_prefetch_factor
: 5past_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}tp_size
: 0fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Click to expand
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0013 | 1 | 5.8248 | - |
0.0066 | 5 | 5.7392 | - |
0.0131 | 10 | 5.7616 | - |
0.0197 | 15 | 5.771 | - |
0.0263 | 20 | 5.738 | - |
0.0329 | 25 | 5.6972 | - |
0.0394 | 30 | 5.6486 | - |
0.0460 | 35 | 5.4818 | - |
0.0526 | 40 | 5.3395 | - |
0.0591 | 45 | 5.3319 | - |
0.0657 | 50 | 5.0993 | 1.5206 |
0.0723 | 55 | 5.0328 | - |
0.0788 | 60 | 4.9303 | - |
0.0854 | 65 | 4.8829 | - |
0.0920 | 70 | 4.8534 | - |
0.0986 | 75 | 4.7204 | - |
0.1051 | 80 | 4.6473 | - |
0.1117 | 85 | 4.5718 | - |
0.1183 | 90 | 4.5464 | - |
0.1248 | 95 | 4.5003 | - |
0.1314 | 100 | 4.4006 | 1.2175 |
0.1380 | 105 | 4.3973 | - |
0.1445 | 110 | 4.3876 | - |
0.1511 | 115 | 4.2815 | - |
0.1577 | 120 | 4.2261 | - |
0.1643 | 125 | 4.2256 | - |
0.1708 | 130 | 4.0866 | - |
0.1774 | 135 | 4.1415 | - |
0.1840 | 140 | 4.0636 | - |
0.1905 | 145 | 3.993 | - |
0.1971 | 150 | 3.9825 | 1.0376 |
0.2037 | 155 | 3.9345 | - |
0.2102 | 160 | 3.8686 | - |
0.2168 | 165 | 3.8343 | - |
0.2234 | 170 | 3.8011 | - |
0.2300 | 175 | 3.8103 | - |
0.2365 | 180 | 3.7799 | - |
0.2431 | 185 | 3.7414 | - |
0.2497 | 190 | 3.7447 | - |
0.2562 | 195 | 3.7346 | - |
0.2628 | 200 | 3.622 | 0.9137 |
0.2694 | 205 | 3.6555 | - |
0.2760 | 210 | 3.5778 | - |
0.2825 | 215 | 3.6234 | - |
0.2891 | 220 | 3.4653 | - |
0.2957 | 225 | 3.5705 | - |
0.3022 | 230 | 3.6318 | - |
0.3088 | 235 | 3.5244 | - |
0.3154 | 240 | 3.4487 | - |
0.3219 | 245 | 3.4906 | - |
0.3285 | 250 | 3.5459 | 0.8556 |
0.3351 | 255 | 3.3821 | - |
0.3417 | 260 | 3.4249 | - |
0.3482 | 265 | 3.4054 | - |
0.3548 | 270 | 3.4558 | - |
0.3614 | 275 | 3.3719 | - |
0.3679 | 280 | 3.2999 | - |
0.3745 | 285 | 3.3562 | - |
0.3811 | 290 | 3.3306 | - |
0.3876 | 295 | 3.2987 | - |
0.3942 | 300 | 3.2789 | 0.8102 |
0.4008 | 305 | 3.3221 | - |
0.4074 | 310 | 3.259 | - |
0.4139 | 315 | 3.2014 | - |
0.4205 | 320 | 3.1932 | - |
0.4271 | 325 | 3.2654 | - |
0.4336 | 330 | 3.1644 | - |
0.4402 | 335 | 3.2603 | - |
0.4468 | 340 | 3.2053 | - |
0.4534 | 345 | 3.1934 | - |
0.4599 | 350 | 3.138 | 0.7800 |
0.4665 | 355 | 3.108 | - |
0.4731 | 360 | 3.1663 | - |
0.4796 | 365 | 3.0978 | - |
0.4862 | 370 | 3.0882 | - |
0.4928 | 375 | 3.0992 | - |
0.4993 | 380 | 3.1188 | - |
0.5059 | 385 | 3.0937 | - |
0.5125 | 390 | 3.0411 | - |
0.5191 | 395 | 3.0851 | - |
0.5256 | 400 | 2.9981 | 0.7582 |
0.5322 | 405 | 3.0407 | - |
0.5388 | 410 | 2.9823 | - |
0.5453 | 415 | 3.0702 | - |
0.5519 | 420 | 3.0528 | - |
0.5585 | 425 | 3.0542 | - |
0.5650 | 430 | 3.0114 | - |
0.5716 | 435 | 2.9981 | - |
0.5782 | 440 | 2.9551 | - |
0.5848 | 445 | 2.9857 | - |
0.5913 | 450 | 2.9816 | 0.7337 |
0.5979 | 455 | 2.9808 | - |
0.6045 | 460 | 3.001 | - |
0.6110 | 465 | 2.9569 | - |
0.6176 | 470 | 2.9685 | - |
0.6242 | 475 | 2.8984 | - |
0.6307 | 480 | 2.8961 | - |
0.6373 | 485 | 2.9701 | - |
0.6439 | 490 | 2.8576 | - |
0.6505 | 495 | 2.9435 | - |
0.6570 | 500 | 2.9025 | 0.7270 |
0.6636 | 505 | 2.9408 | - |
0.6702 | 510 | 2.9115 | - |
0.6767 | 515 | 2.8296 | - |
0.6833 | 520 | 2.8089 | - |
0.6899 | 525 | 2.8953 | - |
0.6965 | 530 | 2.878 | - |
0.7030 | 535 | 2.8488 | - |
0.7096 | 540 | 2.8499 | - |
0.7162 | 545 | 2.7698 | - |
0.7227 | 550 | 2.8673 | 0.7193 |
0.7293 | 555 | 2.8058 | - |
0.7359 | 560 | 2.8479 | - |
0.7424 | 565 | 2.7514 | - |
0.7490 | 570 | 2.8213 | - |
0.7556 | 575 | 2.8438 | - |
0.7622 | 580 | 2.7368 | - |
0.7687 | 585 | 2.7612 | - |
0.7753 | 590 | 2.8911 | - |
0.7819 | 595 | 2.7759 | - |
0.7884 | 600 | 2.7618 | 0.6923 |
0.7950 | 605 | 2.7429 | - |
0.8016 | 610 | 2.7693 | - |
0.8081 | 615 | 2.7278 | - |
0.8147 | 620 | 2.8094 | - |
0.8213 | 625 | 2.7303 | - |
0.8279 | 630 | 2.7333 | - |
0.8344 | 635 | 2.6704 | - |
0.8410 | 640 | 2.75 | - |
0.8476 | 645 | 2.7469 | - |
0.8541 | 650 | 2.7348 | 0.6816 |
0.8607 | 655 | 2.7615 | - |
0.8673 | 660 | 2.7722 | - |
0.8739 | 665 | 2.765 | - |
0.8804 | 670 | 2.7235 | - |
0.8870 | 675 | 2.668 | - |
0.8936 | 680 | 2.7102 | - |
0.9001 | 685 | 2.7256 | - |
0.9067 | 690 | 2.7451 | - |
0.9133 | 695 | 2.1618 | - |
0.9198 | 700 | 1.3555 | 0.6804 |
0.9264 | 705 | 1.493 | - |
0.9330 | 710 | 1.3587 | - |
0.9396 | 715 | 1.3546 | - |
0.9461 | 720 | 1.3266 | - |
0.9527 | 725 | 1.3071 | - |
0.9593 | 730 | 1.2159 | - |
0.9658 | 735 | 1.376 | - |
0.9724 | 740 | 1.2715 | - |
0.9790 | 745 | 1.4462 | - |
0.9855 | 750 | 1.3423 | 0.6624 |
0.9921 | 755 | 1.3689 | - |
0.9987 | 760 | 1.3903 | - |
1.0053 | 765 | 2.43 | - |
1.0118 | 770 | 2.6936 | - |
1.0184 | 775 | 2.6122 | - |
1.0250 | 780 | 2.6665 | - |
1.0315 | 785 | 2.5816 | - |
1.0381 | 790 | 2.6004 | - |
1.0447 | 795 | 2.5618 | - |
1.0512 | 800 | 2.5187 | 0.6604 |
1.0578 | 805 | 2.559 | - |
1.0644 | 810 | 2.6416 | - |
1.0710 | 815 | 2.5599 | - |
1.0775 | 820 | 2.5993 | - |
1.0841 | 825 | 2.6176 | - |
1.0907 | 830 | 2.6315 | - |
1.0972 | 835 | 2.5305 | - |
1.1038 | 840 | 2.5624 | - |
1.1104 | 845 | 2.5767 | - |
1.1170 | 850 | 2.5543 | 0.6536 |
1.1235 | 855 | 2.5607 | - |
1.1301 | 860 | 2.5992 | - |
1.1367 | 865 | 2.6229 | - |
1.1432 | 870 | 2.597 | - |
1.1498 | 875 | 2.6013 | - |
1.1564 | 880 | 2.5763 | - |
1.1629 | 885 | 2.6565 | - |
1.1695 | 890 | 2.5783 | - |
1.1761 | 895 | 2.5474 | - |
1.1827 | 900 | 2.5754 | 0.6460 |
1.1892 | 905 | 2.5905 | - |
1.1958 | 910 | 2.6075 | - |
1.2024 | 915 | 2.5284 | - |
1.2089 | 920 | 2.6113 | - |
1.2155 | 925 | 2.5301 | - |
1.2221 | 930 | 2.5992 | - |
1.2286 | 935 | 2.5951 | - |
1.2352 | 940 | 2.5554 | - |
1.2418 | 945 | 2.5287 | - |
1.2484 | 950 | 2.4902 | 0.6411 |
1.2549 | 955 | 2.5829 | - |
1.2615 | 960 | 2.4933 | - |
1.2681 | 965 | 2.5032 | - |
1.2746 | 970 | 2.579 | - |
1.2812 | 975 | 2.5702 | - |
1.2878 | 980 | 2.5115 | - |
1.2943 | 985 | 2.5074 | - |
1.3009 | 990 | 2.5588 | - |
1.3075 | 995 | 2.4964 | - |
1.3141 | 1000 | 2.4969 | 0.6405 |
1.3206 | 1005 | 2.5437 | - |
1.3272 | 1010 | 2.5002 | - |
1.3338 | 1015 | 2.5195 | - |
1.3403 | 1020 | 2.5596 | - |
1.3469 | 1025 | 2.4809 | - |
1.3535 | 1030 | 2.5545 | - |
1.3601 | 1035 | 2.5403 | - |
1.3666 | 1040 | 2.538 | - |
1.3732 | 1045 | 2.5768 | - |
1.3798 | 1050 | 2.5246 | 0.6392 |
1.3863 | 1055 | 2.5714 | - |
1.3929 | 1060 | 2.4998 | - |
1.3995 | 1065 | 2.4409 | - |
1.4060 | 1070 | 2.4343 | - |
1.4126 | 1075 | 2.4988 | - |
1.4192 | 1080 | 2.519 | - |
1.4258 | 1085 | 2.5475 | - |
1.4323 | 1090 | 2.5481 | - |
1.4389 | 1095 | 2.5262 | - |
1.4455 | 1100 | 2.5288 | 0.6356 |
1.4520 | 1105 | 2.4489 | - |
1.4586 | 1110 | 2.5134 | - |
1.4652 | 1115 | 2.5466 | - |
1.4717 | 1120 | 2.5953 | - |
1.4783 | 1125 | 2.5048 | - |
1.4849 | 1130 | 2.5482 | - |
1.4915 | 1135 | 2.5035 | - |
1.4980 | 1140 | 2.4865 | - |
1.5046 | 1145 | 2.436 | - |
1.5112 | 1150 | 2.5097 | 0.6339 |
1.5177 | 1155 | 2.4402 | - |
1.5243 | 1160 | 2.5121 | - |
1.5309 | 1165 | 2.5289 | - |
1.5375 | 1170 | 2.4334 | - |
1.5440 | 1175 | 2.5176 | - |
1.5506 | 1180 | 2.4507 | - |
1.5572 | 1185 | 2.5162 | - |
1.5637 | 1190 | 2.4426 | - |
1.5703 | 1195 | 2.4526 | - |
1.5769 | 1200 | 2.4578 | 0.6315 |
1.5834 | 1205 | 2.4775 | - |
1.5900 | 1210 | 2.4659 | - |
1.5966 | 1215 | 2.4884 | - |
1.6032 | 1220 | 2.4713 | - |
1.6097 | 1225 | 2.4861 | - |
1.6163 | 1230 | 2.4817 | - |
1.6229 | 1235 | 2.4861 | - |
1.6294 | 1240 | 2.4207 | - |
1.6360 | 1245 | 2.5191 | - |
1.6426 | 1250 | 2.5891 | 0.6282 |
1.6491 | 1255 | 2.4916 | - |
1.6557 | 1260 | 2.4456 | - |
1.6623 | 1265 | 2.4901 | - |
1.6689 | 1270 | 2.5061 | - |
1.6754 | 1275 | 2.5172 | - |
1.6820 | 1280 | 2.4396 | - |
1.6886 | 1285 | 2.5093 | - |
1.6951 | 1290 | 2.4524 | - |
1.7017 | 1295 | 2.4564 | - |
1.7083 | 1300 | 2.48 | 0.6263 |
1.7148 | 1305 | 2.4826 | - |
1.7214 | 1310 | 2.4376 | - |
1.7280 | 1315 | 2.4966 | - |
1.7346 | 1320 | 2.4468 | - |
1.7411 | 1325 | 2.5125 | - |
1.7477 | 1330 | 2.401 | - |
1.7543 | 1335 | 2.5318 | - |
1.7608 | 1340 | 2.4687 | - |
1.7674 | 1345 | 2.5803 | - |
1.7740 | 1350 | 2.4707 | 0.6253 |
1.7806 | 1355 | 2.4686 | - |
1.7871 | 1360 | 2.4372 | - |
1.7937 | 1365 | 2.4549 | - |
1.8003 | 1370 | 2.4697 | - |
1.8068 | 1375 | 2.4849 | - |
1.8134 | 1380 | 2.3773 | - |
1.8200 | 1385 | 2.4402 | - |
1.8265 | 1390 | 2.4962 | - |
1.8331 | 1395 | 2.4085 | - |
1.8397 | 1400 | 2.5318 | 0.6247 |
1.8463 | 1405 | 2.5119 | - |
1.8528 | 1410 | 2.5209 | - |
1.8594 | 1415 | 2.4548 | - |
1.8660 | 1420 | 2.4803 | - |
1.8725 | 1425 | 2.4829 | - |
1.8791 | 1430 | 2.4629 | - |
1.8857 | 1435 | 2.5106 | - |
1.8922 | 1440 | 2.4612 | - |
1.8988 | 1445 | 2.5666 | - |
1.9054 | 1450 | 2.4677 | 0.6243 |
1.9120 | 1455 | 2.2826 | - |
1.9185 | 1460 | 1.2653 | - |
1.9251 | 1465 | 1.1973 | - |
1.9317 | 1470 | 1.2686 | - |
1.9382 | 1475 | 1.3213 | - |
1.9448 | 1480 | 1.1828 | - |
1.9514 | 1485 | 1.3756 | - |
1.9580 | 1490 | 1.276 | - |
1.9645 | 1495 | 1.1679 | - |
1.9711 | 1500 | 1.1197 | 0.6244 |
1.9777 | 1505 | 1.3336 | - |
1.9842 | 1510 | 1.2969 | - |
1.9908 | 1515 | 1.1702 | - |
1.9974 | 1520 | 1.0661 | - |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 4.0.2
- Transformers: 4.51.2
- PyTorch: 2.6.0
- Accelerate: 1.6.0
- Datasets: 3.5.0
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 2
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for ashercn97/medical-v003
Base model
medicalai/ClinicalBERT