glue-mrpc / README.md
lewtun's picture
lewtun HF Staff
Add evaluation results on the mrpc config of glue
8f6a1df
|
raw
history blame
2.67 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - glue
metrics:
  - accuracy
  - f1
model-index:
  - name: glue-mrpc
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: glue
          type: glue
          args: mrpc
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8553921568627451
          - name: F1
            type: f1
            value: 0.8998302207130731
      - task:
          type: natural-language-inference
          name: Natural Language Inference
        dataset:
          name: glue
          type: glue
          config: mrpc
          split: validation
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8553921568627451
            verified: true
          - name: Precision
            type: precision
            value: 0.8548387096774194
            verified: true
          - name: Recall
            type: recall
            value: 0.9498207885304659
            verified: true
          - name: AUC
            type: auc
            value: 0.91568725514712
            verified: true
          - name: F1
            type: f1
            value: 0.8998302207130731
            verified: true
          - name: loss
            type: loss
            value: 0.36538368463516235
            verified: true

glue-mrpc

This model is a fine-tuned version of distilbert-base-uncased on the glue dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3654
  • Accuracy: 0.8554
  • F1: 0.8998

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
No log 1.0 230 0.4039 0.8039 0.8611
No log 2.0 460 0.3654 0.8554 0.8998
0.4368 3.0 690 0.4146 0.8407 0.8885
0.4368 4.0 920 0.5756 0.8456 0.8941
0.1744 5.0 1150 0.5523 0.8456 0.8916

Framework versions

  • Transformers 4.20.1
  • Pytorch 1.11.0
  • Datasets 2.3.2
  • Tokenizers 0.11.6