UnmaskingQwen3 for Token Classification
This model is a fine-tuned version of a custom UnmaskingQwen3ForTokenClassification model for token classification tasks.
Model Details
- Model Type: Custom UnmaskingQwen3ForTokenClassification
- Task: Token Classification (NER/POS/Chunking)
- Training Framework: Transformers + Accelerate
Usage
from transformers import AutoTokenizer, AutoModelForTokenClassification
# Load the model and tokenizer
tokenizer = AutoTokenizer.from_pretrained("your-username/your-model-name", trust_remote_code=True)
model = AutoModelForTokenClassification.from_pretrained("your-username/your-model-name", trust_remote_code=True)
# Use for inference
inputs = tokenizer(["Your text here"], return_tensors="pt", is_split_into_words=False)
outputs = model(**inputs)
predictions = outputs.logits.argmax(dim=-1)
Training Details
- Training Data: ['automated-analytics/ai4privacy-pii-masking-en-v1-ner-coarse', 'automated-analytics/gretel-pii-masking-en-v1-ner-coarse']
- Learning Rate: 5e-05
- Batch Size: 128
- Epochs: 3
- Max Length: 128
Important Note
This model uses a custom model class. Make sure to use trust_remote_code=True
when loading the model.
- Downloads last month
- 6
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support