|
--- |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: distilbart-cnn-12-6-sec |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# distilbart-cnn-12-6-sec |
|
|
|
This model is a fine-tuned version of [sshleifer/distilbart-cnn-12-6](https://huggingface.co/sshleifer/distilbart-cnn-12-6) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0798 |
|
- Rouge1: 72.1665 |
|
- Rouge2: 62.2601 |
|
- Rougel: 67.8376 |
|
- Rougelsum: 71.1407 |
|
- Gen Len: 121.62 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 2 |
|
- eval_batch_size: 2 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |
|
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| |
|
| No log | 1.0 | 99 | 0.3526 | 53.3978 | 38.6395 | 45.6271 | 51.0477 | 111.48 | |
|
| No log | 2.0 | 198 | 0.1961 | 55.7397 | 43.6293 | 50.9595 | 54.0764 | 111.46 | |
|
| No log | 3.0 | 297 | 0.1483 | 66.9443 | 54.8966 | 62.6678 | 65.6787 | 118.64 | |
|
| No log | 4.0 | 396 | 0.1218 | 67.2661 | 56.1852 | 63.1339 | 65.8066 | 124.92 | |
|
| No log | 5.0 | 495 | 0.1139 | 67.2097 | 55.8694 | 62.7508 | 65.9706 | 123.02 | |
|
| 0.4156 | 6.0 | 594 | 0.0940 | 71.607 | 60.6697 | 66.7873 | 70.339 | 122.84 | |
|
| 0.4156 | 7.0 | 693 | 0.0888 | 71.3792 | 61.8326 | 68.25 | 70.5113 | 124.4 | |
|
| 0.4156 | 8.0 | 792 | 0.0870 | 72.7472 | 62.6968 | 68.2853 | 71.5789 | 124.34 | |
|
| 0.4156 | 9.0 | 891 | 0.0799 | 73.4438 | 63.5966 | 68.8737 | 72.3014 | 119.88 | |
|
| 0.4156 | 10.0 | 990 | 0.0798 | 72.1665 | 62.2601 | 67.8376 | 71.1407 | 121.62 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.20.1 |
|
- Pytorch 1.11.0 |
|
- Datasets 2.1.0 |
|
- Tokenizers 0.12.1 |
|
|