|
--- |
|
library_name: transformers |
|
license: mit |
|
base_model: ayameRushia/whisper-v3-turbo-id |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- common_voice_17_0 |
|
metrics: |
|
- wer |
|
model-index: |
|
- name: whisper-v3-turbo-id |
|
results: |
|
- task: |
|
name: Automatic Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: common_voice_17_0 |
|
type: common_voice_17_0 |
|
config: id |
|
split: test |
|
args: id |
|
metrics: |
|
- name: Wer |
|
type: wer |
|
value: 9.17372101582628 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# whisper-v3-turbo-id |
|
|
|
This model is a fine-tuned version of [ayameRushia/whisper-v3-turbo-id](https://huggingface.co/ayameRushia/whisper-v3-turbo-id) on the common_voice_17_0 dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1760 |
|
- Wer: 9.1737 |
|
|
|
## Model description |
|
|
|
Fine tuned from openai/whisper-v3-turbo |
|
|
|
## Intended uses & limitations |
|
|
|
This model only trained using common voice version 17 |
|
|
|
## Training procedure |
|
Preprocess data |
|
``` |
|
import re |
|
|
|
chars_to_ignore_regex = '[\,\?\.\!\;\:\"\β\β\'\β\(\)\[\\\\&/οΌ\β]' # delete following chars |
|
chars_to_space_regex = '[\β\β\-]' # replace the following chars into space |
|
|
|
def remove_special_characters(batch): |
|
batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() + " " |
|
batch["sentence"] = re.sub(chars_to_space_regex, ' ', batch["sentence"]) + " " |
|
# replacing some character |
|
batch["sentence"] = batch["sentence"].replace("Γ©", "e").replace("Γ‘", "a").replace("Ε", "l").replace("Ε", "n").replace("Ε", "o").strip() |
|
return batch |
|
|
|
common_voice = common_voice.map(remove_special_characters) |
|
``` |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1.5e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 32 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine |
|
- training_steps: 3000 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | |
|
|:-------------:|:------:|:----:|:---------------:|:-------:| |
|
| 0.0706 | 1.9231 | 1000 | 0.2361 | 18.0484 | |
|
| 0.0099 | 3.8462 | 2000 | 0.1875 | 10.3607 | |
|
| 0.001 | 5.7692 | 3000 | 0.1760 | 9.1737 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.45.2 |
|
- Pytorch 2.4.1+cu121 |
|
- Datasets 3.0.1 |
|
- Tokenizers 0.20.1 |
|
|