metadata
language:
- en
license: apache-2.0
tags:
- sentence-transformers
- cross-encoder
- generated_from_trainer
- dataset_size:2749365
- loss:BinaryCrossEntropyLoss
base_model: answerdotai/ModernBERT-base
pipeline_tag: text-ranking
library_name: sentence-transformers
metrics:
- map
- mrr@10
- ndcg@10
model-index:
- name: ModernBERT-base trained on GooAQ
results:
- task:
type: cross-encoder-reranking
name: Cross Encoder Reranking
dataset:
name: gooaq dev
type: gooaq-dev
metrics:
- type: map
value: 0.5439
name: Map
- type: mrr@10
value: 0.5411
name: Mrr@10
- type: ndcg@10
value: 0.5936
name: Ndcg@10
- task:
type: cross-encoder-reranking
name: Cross Encoder Reranking
dataset:
name: NanoMSMARCO R100
type: NanoMSMARCO_R100
metrics:
- type: map
value: 0.3929
name: Map
- type: mrr@10
value: 0.3751
name: Mrr@10
- type: ndcg@10
value: 0.4428
name: Ndcg@10
- task:
type: cross-encoder-reranking
name: Cross Encoder Reranking
dataset:
name: NanoNFCorpus R100
type: NanoNFCorpus_R100
metrics:
- type: map
value: 0.3119
name: Map
- type: mrr@10
value: 0.4287
name: Mrr@10
- type: ndcg@10
value: 0.314
name: Ndcg@10
- task:
type: cross-encoder-reranking
name: Cross Encoder Reranking
dataset:
name: NanoNQ R100
type: NanoNQ_R100
metrics:
- type: map
value: 0.3869
name: Map
- type: mrr@10
value: 0.3837
name: Mrr@10
- type: ndcg@10
value: 0.4316
name: Ndcg@10
- task:
type: cross-encoder-nano-beir
name: Cross Encoder Nano BEIR
dataset:
name: NanoBEIR R100 mean
type: NanoBEIR_R100_mean
metrics:
- type: map
value: 0.3639
name: Map
- type: mrr@10
value: 0.3959
name: Mrr@10
- type: ndcg@10
value: 0.3961
name: Ndcg@10
ModernBERT-base trained on GooAQ
This is a Cross Encoder model finetuned from answerdotai/ModernBERT-base using the sentence-transformers library. It computes scores for pairs of texts, which can be used for text reranking and semantic search.
Model Details
Model Description
- Model Type: Cross Encoder
- Base model: answerdotai/ModernBERT-base
- Maximum Sequence Length: 8192 tokens
- Number of Output Labels: 1 label
- Language: en
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Documentation: Cross Encoder Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Cross Encoders on Hugging Face
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import CrossEncoder
# Download from the 🤗 Hub
model = CrossEncoder("ayushexel/ce-modernbert-trained-1epoch")
# Get scores for pairs of texts
pairs = [
['can you still get pregnant if you are infertile?', 'Many infertile couples will go on to conceive a child without treatment. After trying to get pregnant for two years, about 95 percent of couples successfully conceive.'],
['can you still get pregnant if you are infertile?', 'Secondary infertility is the inability to become pregnant or to carry a baby to term after previously giving birth to a baby. Secondary infertility shares many of the same causes of primary infertility. Secondary infertility might be caused by: Impaired sperm production, function or delivery in men.'],
['can you still get pregnant if you are infertile?', "Problems with cervical mucus can interfere with getting pregnant. Mild cases may increase the time it takes to get pregnant, but won't necessarily cause infertility."],
['can you still get pregnant if you are infertile?', 'No treatment can stop the process of diminished ovarian reserve, but women who are infertile due to low egg count or quality can sometimes use assisted reproductive technologies to achieve a pregnancy.'],
['can you still get pregnant if you are infertile?', "Human conception requires an egg and sperm. If you're not ovulating, you won't be able to get pregnant. Anovulation is a common cause of female infertility and it can be triggered by many conditions. Most women who are experiencing ovulation problems have irregular periods."],
]
scores = model.predict(pairs)
print(scores.shape)
# (5,)
# Or rank different texts based on similarity to a single text
ranks = model.rank(
'can you still get pregnant if you are infertile?',
[
'Many infertile couples will go on to conceive a child without treatment. After trying to get pregnant for two years, about 95 percent of couples successfully conceive.',
'Secondary infertility is the inability to become pregnant or to carry a baby to term after previously giving birth to a baby. Secondary infertility shares many of the same causes of primary infertility. Secondary infertility might be caused by: Impaired sperm production, function or delivery in men.',
"Problems with cervical mucus can interfere with getting pregnant. Mild cases may increase the time it takes to get pregnant, but won't necessarily cause infertility.",
'No treatment can stop the process of diminished ovarian reserve, but women who are infertile due to low egg count or quality can sometimes use assisted reproductive technologies to achieve a pregnancy.',
"Human conception requires an egg and sperm. If you're not ovulating, you won't be able to get pregnant. Anovulation is a common cause of female infertility and it can be triggered by many conditions. Most women who are experiencing ovulation problems have irregular periods.",
]
)
# [{'corpus_id': ..., 'score': ...}, {'corpus_id': ..., 'score': ...}, ...]
Evaluation
Metrics
Cross Encoder Reranking
- Dataset:
gooaq-dev
- Evaluated with
CrossEncoderRerankingEvaluator
with these parameters:{ "at_k": 10, "always_rerank_positives": false }
Metric | Value |
---|---|
map | 0.5439 (+0.1636) |
mrr@10 | 0.5411 (+0.1708) |
ndcg@10 | 0.5936 (+0.1609) |
Cross Encoder Reranking
- Datasets:
NanoMSMARCO_R100
,NanoNFCorpus_R100
andNanoNQ_R100
- Evaluated with
CrossEncoderRerankingEvaluator
with these parameters:{ "at_k": 10, "always_rerank_positives": true }
Metric | NanoMSMARCO_R100 | NanoNFCorpus_R100 | NanoNQ_R100 |
---|---|---|---|
map | 0.3929 (-0.0967) | 0.3119 (+0.0509) | 0.3869 (-0.0327) |
mrr@10 | 0.3751 (-0.1024) | 0.4287 (-0.0711) | 0.3837 (-0.0429) |
ndcg@10 | 0.4428 (-0.0976) | 0.3140 (-0.0110) | 0.4316 (-0.0691) |
Cross Encoder Nano BEIR
- Dataset:
NanoBEIR_R100_mean
- Evaluated with
CrossEncoderNanoBEIREvaluator
with these parameters:{ "dataset_names": [ "msmarco", "nfcorpus", "nq" ], "rerank_k": 100, "at_k": 10, "always_rerank_positives": true }
Metric | Value |
---|---|
map | 0.3639 (-0.0261) |
mrr@10 | 0.3959 (-0.0722) |
ndcg@10 | 0.3961 (-0.0592) |
Training Details
Training Dataset
Unnamed Dataset
- Size: 2,749,365 training samples
- Columns:
question
,answer
, andlabel
- Approximate statistics based on the first 1000 samples:
question answer label type string string int details - min: 18 characters
- mean: 43.62 characters
- max: 83 characters
- min: 57 characters
- mean: 250.11 characters
- max: 396 characters
- 0: ~82.10%
- 1: ~17.90%
- Samples:
question answer label can you still get pregnant if you are infertile?
Many infertile couples will go on to conceive a child without treatment. After trying to get pregnant for two years, about 95 percent of couples successfully conceive.
1
can you still get pregnant if you are infertile?
Secondary infertility is the inability to become pregnant or to carry a baby to term after previously giving birth to a baby. Secondary infertility shares many of the same causes of primary infertility. Secondary infertility might be caused by: Impaired sperm production, function or delivery in men.
0
can you still get pregnant if you are infertile?
Problems with cervical mucus can interfere with getting pregnant. Mild cases may increase the time it takes to get pregnant, but won't necessarily cause infertility.
0
- Loss:
BinaryCrossEntropyLoss
with these parameters:{ "activation_fn": "torch.nn.modules.linear.Identity", "pos_weight": 5 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 256per_device_eval_batch_size
: 256learning_rate
: 2e-05num_train_epochs
: 1warmup_ratio
: 0.1seed
: 12bf16
: Truedataloader_num_workers
: 12load_best_model_at_end
: True
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 256per_device_eval_batch_size
: 256per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 1max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 12data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 12dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}tp_size
: 0fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | gooaq-dev_ndcg@10 | NanoMSMARCO_R100_ndcg@10 | NanoNFCorpus_R100_ndcg@10 | NanoNQ_R100_ndcg@10 | NanoBEIR_R100_mean_ndcg@10 |
---|---|---|---|---|---|---|---|
-1 | -1 | - | 0.1022 (-0.3304) | 0.0716 (-0.4688) | 0.2417 (-0.0833) | 0.0286 (-0.4720) | 0.1140 (-0.3414) |
0.0001 | 1 | 1.3449 | - | - | - | - | - |
0.0186 | 200 | 1.2174 | - | - | - | - | - |
0.0372 | 400 | 1.156 | - | - | - | - | - |
0.0559 | 600 | 0.8504 | - | - | - | - | - |
0.0745 | 800 | 0.7192 | - | - | - | - | - |
0.0931 | 1000 | 0.6675 | 0.5936 (+0.1609) | 0.4428 (-0.0976) | 0.3140 (-0.0110) | 0.4316 (-0.0691) | 0.3961 (-0.0592) |
Framework Versions
- Python: 3.11.0
- Sentence Transformers: 4.0.1
- Transformers: 4.50.3
- PyTorch: 2.6.0+cu124
- Accelerate: 1.5.2
- Datasets: 3.5.0
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}