SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
This is a sentence-transformers model finetuned from sentence-transformers/all-MiniLM-L6-v2 on the gooaq dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/all-MiniLM-L6-v2
- Maximum Sequence Length: 256 tokens
- Output Dimensionality: 384 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
- Language: en
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("ayushexel/emb-all-MiniLM-L6-v2-gooaq-2-epochs")
# Run inference
sentences = [
'what is usb c ss?',
'The USB Type-C specification is pretty confusing. ... The standard USB logo to identify USB 2.0 ports or slower. "SS" markings, which stand for SuperSpeed, to identify USB 3.0 ports, otherwise known as USB 3.1 gen 1. "10" markings, which stand for 10 Gbps, to identify USB 3.1 gen 2 ports with ultra-fast connectivity.',
'“Global warming” refers to the rise in global temperatures due mainly to the increasing concentrations of greenhouse gases in the atmosphere. “Climate change” refers to the increasing changes in the measures of climate over a long period of time – including precipitation, temperature, and wind patterns.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Triplet
- Dataset:
gooqa-dev
- Evaluated with
TripletEvaluator
Metric | Value |
---|---|
cosine_accuracy | 0.5798 |
Training Details
Training Dataset
gooaq
- Dataset: gooaq at b089f72
- Size: 1,995,000 training samples
- Columns:
question
andanswer
- Approximate statistics based on the first 1000 samples:
question answer type string string details - min: 8 tokens
- mean: 11.86 tokens
- max: 23 tokens
- min: 14 tokens
- mean: 60.74 tokens
- max: 133 tokens
- Samples:
question answer can twine be a noun?
noun. a strong thread or string composed of two or more strands twisted together. an act of twining, twisting, or interweaving.
what is bo id in nsdl?
The demat account number allotted to the beneficiary holder(s) by DP is known as the BO-ID. In CDSL it is 16 digits number. It is an intermediary (an institution) between the investor and the depository.
how much does it cost to run an electric fan all night?
The average indoor ceiling fan costs around 0.13c to 1.29c per hour to run, or between $1.90 and $18.85 each year. This will depend on the fan's speed settings, how frequently it's used, and the rate you pay on electricity. Like most electrical appliances, a ceiling fan's power is measured in watts.
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Evaluation Dataset
gooaq
- Dataset: gooaq at b089f72
- Size: 5,000 evaluation samples
- Columns:
question
andanswer
- Approximate statistics based on the first 1000 samples:
question answer type string string details - min: 8 tokens
- mean: 11.8 tokens
- max: 21 tokens
- min: 14 tokens
- mean: 60.68 tokens
- max: 123 tokens
- Samples:
question answer how much water should a person drink in 8 hours?
Health authorities commonly recommend eight 8-ounce glasses, which equals about 2 liters, or half a gallon. This is called the 8×8 rule and is very easy to remember. However, some health gurus believe that you need to sip on water constantly throughout the day, even when you're not thirsty.
what does this mean in excel #name?
Important: The #NAME? error signifies that something needs to be corrected in the syntax, so when you see the error in your formula, resolve it. Do not use any error-handling functions such as IFERROR to mask the error. To avoid typos in formula names, use the Formula Wizard in Excel.
are hydroflask good for the environment?
Hydro Flasks are a new fad among many students and adults to help minimize plastic waste in the oceans. Hydro Flasks are great because they use a type of metal called TempShield, which keeps your beverage or food either hot for up to six hours or cold for up to twenty-four hours.
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 256per_device_eval_batch_size
: 256num_train_epochs
: 2warmup_ratio
: 0.1fp16
: Truebatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 256per_device_eval_batch_size
: 256per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 2max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}tp_size
: 0fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Click to expand
Epoch | Step | Training Loss | Validation Loss | gooqa-dev_cosine_accuracy |
---|---|---|---|---|
-1 | -1 | - | - | 0.5368 |
0.0128 | 100 | 0.0762 | - | - |
0.0257 | 200 | 0.0715 | - | - |
0.0385 | 300 | 0.0673 | - | - |
0.0513 | 400 | 0.0664 | - | - |
0.0642 | 500 | 0.0669 | - | - |
0.0770 | 600 | 0.0678 | - | - |
0.0898 | 700 | 0.0656 | - | - |
0.1027 | 800 | 0.0624 | - | - |
0.1155 | 900 | 0.0653 | - | - |
0.1283 | 1000 | 0.0642 | 0.0447 | 0.5426 |
0.1412 | 1100 | 0.0641 | - | - |
0.1540 | 1200 | 0.0639 | - | - |
0.1668 | 1300 | 0.0611 | - | - |
0.1796 | 1400 | 0.0616 | - | - |
0.1925 | 1500 | 0.0611 | - | - |
0.2053 | 1600 | 0.0629 | - | - |
0.2181 | 1700 | 0.0636 | - | - |
0.2310 | 1800 | 0.0632 | - | - |
0.2438 | 1900 | 0.064 | - | - |
0.2566 | 2000 | 0.0614 | 0.0404 | 0.5424 |
0.2695 | 2100 | 0.0622 | - | - |
0.2823 | 2200 | 0.0574 | - | - |
0.2951 | 2300 | 0.0581 | - | - |
0.3080 | 2400 | 0.0598 | - | - |
0.3208 | 2500 | 0.0555 | - | - |
0.3336 | 2600 | 0.0566 | - | - |
0.3465 | 2700 | 0.0583 | - | - |
0.3593 | 2800 | 0.0574 | - | - |
0.3721 | 2900 | 0.0577 | - | - |
0.3850 | 3000 | 0.056 | 0.0405 | 0.5390 |
0.3978 | 3100 | 0.0599 | - | - |
0.4106 | 3200 | 0.0538 | - | - |
0.4235 | 3300 | 0.0559 | - | - |
0.4363 | 3400 | 0.0577 | - | - |
0.4491 | 3500 | 0.0533 | - | - |
0.4620 | 3600 | 0.0528 | - | - |
0.4748 | 3700 | 0.052 | - | - |
0.4876 | 3800 | 0.0523 | - | - |
0.5004 | 3900 | 0.0549 | - | - |
0.5133 | 4000 | 0.0508 | 0.0377 | 0.5550 |
0.5261 | 4100 | 0.0519 | - | - |
0.5389 | 4200 | 0.0501 | - | - |
0.5518 | 4300 | 0.0498 | - | - |
0.5646 | 4400 | 0.0522 | - | - |
0.5774 | 4500 | 0.0521 | - | - |
0.5903 | 4600 | 0.0513 | - | - |
0.6031 | 4700 | 0.0509 | - | - |
0.6159 | 4800 | 0.0502 | - | - |
0.6288 | 4900 | 0.052 | - | - |
0.6416 | 5000 | 0.0516 | 0.0348 | 0.5540 |
0.6544 | 5100 | 0.0496 | - | - |
0.6673 | 5200 | 0.0491 | - | - |
0.6801 | 5300 | 0.0498 | - | - |
0.6929 | 5400 | 0.0537 | - | - |
0.7058 | 5500 | 0.0492 | - | - |
0.7186 | 5600 | 0.0504 | - | - |
0.7314 | 5700 | 0.0488 | - | - |
0.7443 | 5800 | 0.0474 | - | - |
0.7571 | 5900 | 0.048 | - | - |
0.7699 | 6000 | 0.046 | 0.0347 | 0.5596 |
0.7828 | 6100 | 0.0494 | - | - |
0.7956 | 6200 | 0.0482 | - | - |
0.8084 | 6300 | 0.0457 | - | - |
0.8212 | 6400 | 0.05 | - | - |
0.8341 | 6500 | 0.0468 | - | - |
0.8469 | 6600 | 0.0492 | - | - |
0.8597 | 6700 | 0.0463 | - | - |
0.8726 | 6800 | 0.0467 | - | - |
0.8854 | 6900 | 0.0468 | - | - |
0.8982 | 7000 | 0.0455 | 0.0321 | 0.5648 |
0.9111 | 7100 | 0.0442 | - | - |
0.9239 | 7200 | 0.0461 | - | - |
0.9367 | 7300 | 0.0441 | - | - |
0.9496 | 7400 | 0.0449 | - | - |
0.9624 | 7500 | 0.0463 | - | - |
0.9752 | 7600 | 0.0435 | - | - |
0.9881 | 7700 | 0.0442 | - | - |
1.0009 | 7800 | 0.0432 | - | - |
1.0137 | 7900 | 0.0396 | - | - |
1.0266 | 8000 | 0.0381 | 0.0307 | 0.5700 |
1.0394 | 8100 | 0.0366 | - | - |
1.0522 | 8200 | 0.0374 | - | - |
1.0651 | 8300 | 0.0401 | - | - |
1.0779 | 8400 | 0.0375 | - | - |
1.0907 | 8500 | 0.0378 | - | - |
1.1036 | 8600 | 0.0391 | - | - |
1.1164 | 8700 | 0.0347 | - | - |
1.1292 | 8800 | 0.0383 | - | - |
1.1421 | 8900 | 0.0369 | - | - |
1.1549 | 9000 | 0.0375 | 0.0305 | 0.5626 |
1.1677 | 9100 | 0.0386 | - | - |
1.1805 | 9200 | 0.0359 | - | - |
1.1934 | 9300 | 0.0361 | - | - |
1.2062 | 9400 | 0.0358 | - | - |
1.2190 | 9500 | 0.0385 | - | - |
1.2319 | 9600 | 0.0335 | - | - |
1.2447 | 9700 | 0.038 | - | - |
1.2575 | 9800 | 0.0372 | - | - |
1.2704 | 9900 | 0.0364 | - | - |
1.2832 | 10000 | 0.0339 | 0.0297 | 0.5766 |
1.2960 | 10100 | 0.0341 | - | - |
1.3089 | 10200 | 0.0375 | - | - |
1.3217 | 10300 | 0.0377 | - | - |
1.3345 | 10400 | 0.0346 | - | - |
1.3474 | 10500 | 0.036 | - | - |
1.3602 | 10600 | 0.034 | - | - |
1.3730 | 10700 | 0.0376 | - | - |
1.3859 | 10800 | 0.0357 | - | - |
1.3987 | 10900 | 0.0362 | - | - |
1.4115 | 11000 | 0.0338 | 0.0284 | 0.5786 |
1.4244 | 11100 | 0.0346 | - | - |
1.4372 | 11200 | 0.0346 | - | - |
1.4500 | 11300 | 0.0354 | - | - |
1.4629 | 11400 | 0.0346 | - | - |
1.4757 | 11500 | 0.0344 | - | - |
1.4885 | 11600 | 0.0346 | - | - |
1.5013 | 11700 | 0.0367 | - | - |
1.5142 | 11800 | 0.0339 | - | - |
1.5270 | 11900 | 0.0345 | - | - |
1.5398 | 12000 | 0.0354 | 0.0284 | 0.5768 |
1.5527 | 12100 | 0.0323 | - | - |
1.5655 | 12200 | 0.0345 | - | - |
1.5783 | 12300 | 0.0363 | - | - |
1.5912 | 12400 | 0.0353 | - | - |
1.6040 | 12500 | 0.0356 | - | - |
1.6168 | 12600 | 0.0336 | - | - |
1.6297 | 12700 | 0.0349 | - | - |
1.6425 | 12800 | 0.0343 | - | - |
1.6553 | 12900 | 0.0361 | - | - |
1.6682 | 13000 | 0.0362 | 0.0272 | 0.5792 |
1.6810 | 13100 | 0.0335 | - | - |
1.6938 | 13200 | 0.0327 | - | - |
1.7067 | 13300 | 0.0343 | - | - |
1.7195 | 13400 | 0.0339 | - | - |
1.7323 | 13500 | 0.0332 | - | - |
1.7452 | 13600 | 0.0338 | - | - |
1.7580 | 13700 | 0.0353 | - | - |
1.7708 | 13800 | 0.034 | - | - |
1.7837 | 13900 | 0.0337 | - | - |
1.7965 | 14000 | 0.0336 | 0.0274 | 0.5784 |
1.8093 | 14100 | 0.0355 | - | - |
1.8221 | 14200 | 0.0334 | - | - |
1.8350 | 14300 | 0.0307 | - | - |
1.8478 | 14400 | 0.0333 | - | - |
1.8606 | 14500 | 0.0323 | - | - |
1.8735 | 14600 | 0.0319 | - | - |
1.8863 | 14700 | 0.0323 | - | - |
1.8991 | 14800 | 0.0332 | - | - |
1.9120 | 14900 | 0.0331 | - | - |
1.9248 | 15000 | 0.0339 | 0.0266 | 0.5786 |
1.9376 | 15100 | 0.0335 | - | - |
1.9505 | 15200 | 0.0328 | - | - |
1.9633 | 15300 | 0.0319 | - | - |
1.9761 | 15400 | 0.0348 | - | - |
1.9890 | 15500 | 0.0336 | - | - |
-1 | -1 | - | - | 0.5798 |
Framework Versions
- Python: 3.11.0
- Sentence Transformers: 4.0.1
- Transformers: 4.50.3
- PyTorch: 2.6.0+cu124
- Accelerate: 1.5.2
- Datasets: 3.5.0
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 21
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for ayushexel/emb-all-MiniLM-L6-v2-gooaq-2-epochs
Base model
sentence-transformers/all-MiniLM-L6-v2