File size: 52,699 Bytes
7af9727
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
---
language: []
library_name: sentence-transformers
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:15525
- loss:MultipleNegativesRankingLoss
base_model: BAAI/bge-small-en-v1.5
datasets:
- baconnier/finance_dataset_small_private
metrics:
- cosine_accuracy
- dot_accuracy
- manhattan_accuracy
- euclidean_accuracy
- max_accuracy
widget:
- source_sentence: What is the loan to value ratio (LTV) for Samantha's mortgage,
    and how does it relate to the definition of LTV?
  sentences:
  - 'Loan amount = Home value - Down payment

    Loan amount = $300,000 - $60,000 = $240,000

    LTV = Loan amount ÷ Home value

    LTV = $240,000 ÷ $300,000 = 0.8 or 80%

    The LTV is the proportion of the property''s value financed by the loan.

    The LTV for Samantha''s mortgage is 80%, which aligns with the definition of LTV
    as the proportion of the property''s value financed by the loan.'
  - 'LTV = Down payment ÷ Home value

    LTV = $60,000 ÷ $300,000 = 0.2 or 20%

    The LTV for Samantha''s mortgage is 20%.'
  - What is a sale in the context of securities trading?
- source_sentence: What is greenmail, and how does it differ from a typical stock
    acquisition?
  sentences:
  - 'Greenmail is when a company buys a small amount of stock in another company.
    This is different from a normal stock purchase because the amount is small.

    Greenmail is a small stock purchase, unlike a typical acquisition.'
  - 'Greenmail is a corporate finance tactic where an unfriendly entity acquires a
    large block of a target company''s stock, intending to force the target company
    to buy back the shares at a significant premium to prevent a hostile takeover.
    This differs from a typical stock acquisition, which is usually done for investment
    purposes or to gain a smaller ownership stake, without the explicit intention
    of forcing a buyback or threatening a takeover.

    Greenmail is a tactic used by an unfriendly entity to force a target company to
    buy back its shares at a premium to prevent a hostile takeover, while a typical
    stock acquisition is done for investment or to gain a smaller ownership stake
    without the intention of forcing a buyback or threatening a takeover.'
  - What is the process of 'circling' in the context of underwriting a new share issue?
- source_sentence: 'ISOs are not taxed at grant or exercise. If shares are held for
    2 years from grant and 1 year from exercise, the profit is taxed as long-term
    capital gain. If holding periods are not met, it''s a disqualifying disposition,
    and the profit is taxed as ordinary income.

    ISOs are tax-free at grant and exercise. Profit is taxed as capital gain or ordinary
    income based on holding periods.'
  sentences:
  - 'Incentive Stock Options have no tax benefits and are taxed as ordinary income
    when exercised.

    ISOs are taxed as ordinary income when exercised.'
  - What are the key characteristics of Incentive Stock Options (ISOs) in terms of
    taxation?
  - What is a short squeeze, and how does it affect stock prices?
- source_sentence: What is a sell order, and how does it relate to Maggie's decision
    to sell her XYZ Corporation shares?
  sentences:
  - 'A performance fund is a growth-oriented mutual fund that invests primarily in
    stocks of companies with high growth potential and low dividend payouts. These
    funds are typically associated with higher risk compared to other types of mutual
    funds. For example, balanced funds invest in a mix of stocks and bonds and have
    a more moderate risk profile, while money market funds invest in low-risk, short-term
    securities and offer lower returns. Performance funds aim for higher capital appreciation
    but come with increased volatility.

    A performance fund is a high-risk, growth-oriented mutual fund that invests in
    stocks with high growth potential and low dividends, aiming for capital appreciation.
    It differs from balanced funds (moderate risk, mix of stocks and bonds) and money
    market funds (low risk, short-term securities, lower returns).'
  - 'A sell order is when you want to buy shares of a stock. Maggie wanted to sell
    her XYZ shares because the price was going up.

    Maggie placed a sell order to buy XYZ shares since the price was increasing.'
  - 'A sell order is an instruction given by an investor to a broker to sell a specific
    financial asset at a certain price or market condition. Maggie placed a sell order
    for 1,000 shares of XYZ Corporation at a limit price of $50 per share because
    she believed the company''s recent acquisition announcement would negatively impact
    the stock price in the short term.

    Maggie placed a sell order to sell 1,000 XYZ shares at $50 or higher due to her
    expectation of a short-term price decline following the company''s acquisition
    announcement.'
- source_sentence: What is industrial production, and how is it measured by the Federal
    Reserve Board?
  sentences:
  - What is triangular arbitrage, and how does it allow traders to profit from price
    discrepancies across three different markets?
  - 'Industrial production is a statistic that measures the output of factories and
    mines in the US. It is released by the Federal Reserve Board every quarter.

    Industrial production measures factory and mine output, released quarterly by
    the Fed.'
  - 'Industrial production is a statistic determined by the Federal Reserve Board
    that measures the total output of all US factories and mines on a monthly basis.
    The Fed collects data from various government agencies and trade associations
    to calculate the industrial production index, which serves as an important economic
    indicator, providing insight into the health of the manufacturing and mining sectors.

    Industrial production is a monthly statistic calculated by the Federal Reserve
    Board, measuring the total output of US factories and mines using data from government
    agencies and trade associations, serving as a key economic indicator for the manufacturing
    and mining sectors.'
pipeline_tag: sentence-similarity
model-index:
- name: SentenceTransformer based on BAAI/bge-small-en-v1.5
  results:
  - task:
      type: triplet
      name: Triplet
    dataset:
      name: Finance Embedding Metric
      type: Finance_Embedding_Metric
    metrics:
    - type: cosine_accuracy
      value: 0.9791425260718424
      name: Cosine Accuracy
    - type: dot_accuracy
      value: 0.02085747392815759
      name: Dot Accuracy
    - type: manhattan_accuracy
      value: 0.9779837775202781
      name: Manhattan Accuracy
    - type: euclidean_accuracy
      value: 0.9791425260718424
      name: Euclidean Accuracy
    - type: max_accuracy
      value: 0.9791425260718424
      name: Max Accuracy
---

# SentenceTransformer based on BAAI/bge-small-en-v1.5

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) on the [baconnier/finance_dataset_small_private](https://huggingface.co/datasets/baconnier/finance_dataset_small_private) dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) <!-- at revision 5c38ec7c405ec4b44b94cc5a9bb96e735b38267a -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 384 tokens
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
    - [baconnier/finance_dataset_small_private](https://huggingface.co/datasets/baconnier/finance_dataset_small_private)
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("baconnier/Finance2_embedding_small_en-V1.5")
# Run inference
sentences = [
    'What is industrial production, and how is it measured by the Federal Reserve Board?',
    'Industrial production is a statistic determined by the Federal Reserve Board that measures the total output of all US factories and mines on a monthly basis. The Fed collects data from various government agencies and trade associations to calculate the industrial production index, which serves as an important economic indicator, providing insight into the health of the manufacturing and mining sectors.\nIndustrial production is a monthly statistic calculated by the Federal Reserve Board, measuring the total output of US factories and mines using data from government agencies and trade associations, serving as a key economic indicator for the manufacturing and mining sectors.',
    'Industrial production is a statistic that measures the output of factories and mines in the US. It is released by the Federal Reserve Board every quarter.\nIndustrial production measures factory and mine output, released quarterly by the Fed.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Triplet
* Dataset: `Finance_Embedding_Metric`
* Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)

| Metric             | Value      |
|:-------------------|:-----------|
| cosine_accuracy    | 0.9791     |
| dot_accuracy       | 0.0209     |
| manhattan_accuracy | 0.978      |
| euclidean_accuracy | 0.9791     |
| **max_accuracy**   | **0.9791** |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### baconnier/finance_dataset_small_private

* Dataset: [baconnier/finance_dataset_small_private](https://huggingface.co/datasets/baconnier/finance_dataset_small_private) at [d7e6492](https://huggingface.co/datasets/baconnier/finance_dataset_small_private/tree/d7e6492d2b42d28b49bbe5f2c91bf93f04b570cb)
* Size: 15,525 training samples
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
* Approximate statistics based on the first 1000 samples:
  |         | anchor                                                                              | positive                                                                            | negative                                                                            |
  |:--------|:------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
  | type    | string                                                                              | string                                                                              | string                                                                              |
  | details | <ul><li>min: 11 tokens</li><li>mean: 76.86 tokens</li><li>max: 304 tokens</li></ul> | <ul><li>min: 10 tokens</li><li>mean: 79.23 tokens</li><li>max: 299 tokens</li></ul> | <ul><li>min: 14 tokens</li><li>mean: 60.36 tokens</li><li>max: 155 tokens</li></ul> |
* Samples:
  | anchor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | positive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | negative                                                                                                                                                                                                                                                                                                                                                                                                                    |
  |:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>What is the key difference between a whole loan and a participation loan in terms of investment ownership?</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <code>The context clearly states that a whole loan is a type of investment where an investor purchases the entire mortgage loan from the original lender, becoming the sole owner. This is in contrast to a participation loan, where multiple investors share ownership of a single loan. Therefore, the key difference between a whole loan and a participation loan is that a whole loan is owned entirely by a single investor, while a participation loan involves shared ownership among multiple investors.<br>In a whole loan, a single investor owns the entire mortgage loan, while in a participation loan, multiple investors share ownership of the loan.</code> | <code>A whole loan is where multiple investors share ownership of a loan, while a participation loan is where an investor purchases the entire loan. Since the context states that a whole loan is where an investor purchases the entire mortgage loan and becomes the sole owner, this answer is incorrect.<br>A whole loan involves multiple investors, while a participation loan is owned by a single investor.</code> |
  | <code>The role of an executor is to manage and distribute the assets of a deceased person's estate in accordance with their will. This includes tasks such as settling debts, filing tax returns, and ensuring that the assets are distributed to the beneficiaries as specified in the will. The executor is appointed by the court to carry out these duties. In the given context, Michael Johnson was nominated by John Smith in his will and appointed by the court as the executor of John's estate, which was valued at $5 million. Michael's responsibilities include dividing the estate equally among John's three children, donating $500,000 to the local animal shelter as per John's instructions, settling the $200,000 mortgage and $50,000 credit card debt, and filing John's final income tax return and paying any outstanding taxes.<br>An executor, appointed by the court, manages and distributes a deceased person's assets according to their will, settling debts, filing taxes, and ensuring the will is followed.</code> | <code>What is the role of an executor in managing a deceased person's estate?</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <code>An executor is someone who manages a deceased person's estate. They are responsible for distributing the assets according to the will. In this case, John Smith passed away and nominated Michael Johnson as the executor.<br>The executor is responsible for distributing the assets of a deceased person's estate according to their will.</code>                                                                   |
  | <code>What is a ticker tape, and how does it help investors?</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <code>A ticker tape is a computerized device that relays stock symbols, latest prices, and trading volumes to investors worldwide in real-time. It helps investors by providing up-to-the-second information about the stocks they are monitoring or interested in, enabling them to make quick and informed trading decisions based on the most current market data available.<br>A ticker tape is a real-time digital stock data display that empowers investors to make timely, data-driven trading decisions by providing the latest stock symbols, prices, and volumes.</code>                                                                                           | <code>A ticker tape is a device that shows stock information. It helps investors by providing some data about stocks.<br>A ticker tape provides stock data to investors.</code>                                                                                                                                                                                                                                             |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
  ```json
  {
      "scale": 20.0,
      "similarity_fct": "cos_sim"
  }
  ```

### Evaluation Dataset

#### baconnier/finance_dataset_small_private

* Dataset: [baconnier/finance_dataset_small_private](https://huggingface.co/datasets/baconnier/finance_dataset_small_private) at [d7e6492](https://huggingface.co/datasets/baconnier/finance_dataset_small_private/tree/d7e6492d2b42d28b49bbe5f2c91bf93f04b570cb)
* Size: 862 evaluation samples
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
* Approximate statistics based on the first 1000 samples:
  |         | anchor                                                                              | positive                                                                            | negative                                                                           |
  |:--------|:------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
  | type    | string                                                                              | string                                                                              | string                                                                             |
  | details | <ul><li>min: 10 tokens</li><li>mean: 78.51 tokens</li><li>max: 286 tokens</li></ul> | <ul><li>min: 12 tokens</li><li>mean: 76.02 tokens</li><li>max: 304 tokens</li></ul> | <ul><li>min: 20 tokens</li><li>mean: 59.8 tokens</li><li>max: 271 tokens</li></ul> |
* Samples:
  | anchor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | positive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | negative                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
  |:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>What is the underwriter's discount in the given IPO scenario, and how does it relate to the gross spread?</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <code>The underwriter's discount is the difference between the price the underwriter pays for the shares and the price at which they sell them to the public. In this case, the underwriter buys the shares at a 7% discount from the IPO price of $20 per share. The underwriter's discount is also known as the gross spread, as it represents the gross profit earned by the underwriter.<br>The underwriter's discount is 7%, which is equivalent to $1.40 per share. This is also known as the gross spread, representing the underwriter's gross profit.</code>                                                                                                                                                                                                                                                                                   | <code>The underwriter's discount is the difference between the price the underwriter pays for the shares and the price at which they sell them to the public. In this case, the underwriter buys the shares at a 7% discount, but the gross spread is not mentioned.<br>The underwriter's discount is 7%, but the gross spread is unknown.</code>                                                                                                                                                                                          |
  | <code>What is the primary function of the equity market, and how does it relate to the stock market?</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <code>The equity market, synonymous with the stock market, serves as a platform for companies to issue ownership shares to raise capital for growth and expansion. Simultaneously, it allows investors to buy these shares, becoming part-owners of the companies and potentially earning returns through stock price appreciation and dividends. The equity market plays a vital role in the financial system by efficiently allocating capital to businesses and providing investment opportunities to individuals and institutions.<br>The equity market, or stock market, primarily functions as a mechanism for companies to raise capital by issuing ownership shares, while providing investors with opportunities to invest in these companies and earn returns, thus facilitating efficient capital allocation in the financial system.</code> | <code>The equity market is where ownership shares of companies are bought and sold. It allows companies to raise money by selling stocks. The stock market is the same as the equity market.<br>The equity market and the stock market are the same thing, where stocks are traded.</code>                                                                                                                                                                                                                                                 |
  | <code>A selling syndicate is a group of investment banks that work together to underwrite and distribute a new security issue, such as stocks or bonds, to investors. The syndicate is typically led by one or more lead underwriters, who coordinate the distribution of the securities and set the offering price. In the case of XYZ Corporation, the selling syndicate is led by ABC Investment Bank and consists of 5 investment banks in total. The syndicate has agreed to purchase 10 million new shares from XYZ Corporation at a fixed price of $50 per share, which they will then sell to investors at a higher price of $55 per share. This process allows XYZ Corporation to raise capital by issuing new shares, while the selling syndicate earns a commission on the sale of the shares. The syndicate's role is to facilitate the distribution of the new shares to a wider pool of investors, helping to ensure the success of the offering.<br>A selling syndicate is a group of investment banks that jointly underwrite and distribute a new security issue to investors. In XYZ Corporation's case, the syndicate will purchase shares from the company at a fixed price and resell them to investors at a higher price, earning a commission and facilitating the successful distribution of the new shares.</code> | <code>What is a selling syndicate, and how does it function in the context of XYZ Corporation's new share issue?</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <code>A selling syndicate is a group of investment banks that work together to sell new shares of a company. In this case, XYZ Corporation has hired 5 investment banks to sell their new shares. The syndicate buys the shares from XYZ Corporation at a fixed price and then sells them to investors at a higher price.<br>A selling syndicate is a group of investment banks that jointly underwrite and distribute new shares of a company to investors, buying the shares at a fixed price and selling them at a higher price.</code> |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
  ```json
  {
      "scale": 20.0,
      "similarity_fct": "cos_sim"
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: steps
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `num_train_epochs`: 1
- `warmup_ratio`: 0.1
- `bf16`: True
- `batch_sampler`: no_duplicates

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 1
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch  | Step | Training Loss | loss   | Finance_Embedding_Metric_max_accuracy |
|:------:|:----:|:-------------:|:------:|:-------------------------------------:|
| 0.0103 | 10   | 0.9918        | -      | -                                     |
| 0.0206 | 20   | 0.8866        | -      | -                                     |
| 0.0309 | 30   | 0.7545        | -      | -                                     |
| 0.0412 | 40   | 0.6731        | -      | -                                     |
| 0.0515 | 50   | 0.2897        | -      | -                                     |
| 0.0618 | 60   | 0.214         | -      | -                                     |
| 0.0721 | 70   | 0.1677        | -      | -                                     |
| 0.0824 | 80   | 0.0479        | -      | -                                     |
| 0.0927 | 90   | 0.191         | -      | -                                     |
| 0.1030 | 100  | 0.1188        | -      | -                                     |
| 0.1133 | 110  | 0.1909        | -      | -                                     |
| 0.1236 | 120  | 0.0486        | -      | -                                     |
| 0.1339 | 130  | 0.0812        | -      | -                                     |
| 0.1442 | 140  | 0.1282        | -      | -                                     |
| 0.1545 | 150  | 0.15          | -      | -                                     |
| 0.1648 | 160  | 0.0605        | -      | -                                     |
| 0.1751 | 170  | 0.0431        | -      | -                                     |
| 0.1854 | 180  | 0.0613        | -      | -                                     |
| 0.1957 | 190  | 0.0407        | -      | -                                     |
| 0.2008 | 195  | -             | 0.0605 | -                                     |
| 0.2060 | 200  | 0.0567        | -      | -                                     |
| 0.2163 | 210  | 0.0294        | -      | -                                     |
| 0.2266 | 220  | 0.0284        | -      | -                                     |
| 0.2369 | 230  | 0.0444        | -      | -                                     |
| 0.2472 | 240  | 0.0559        | -      | -                                     |
| 0.2575 | 250  | 0.0301        | -      | -                                     |
| 0.2678 | 260  | 0.0225        | -      | -                                     |
| 0.2781 | 270  | 0.0256        | -      | -                                     |
| 0.2884 | 280  | 0.016         | -      | -                                     |
| 0.2987 | 290  | 0.0063        | -      | -                                     |
| 0.3090 | 300  | 0.0442        | -      | -                                     |
| 0.3193 | 310  | 0.0425        | -      | -                                     |
| 0.3296 | 320  | 0.0534        | -      | -                                     |
| 0.3399 | 330  | 0.0264        | -      | -                                     |
| 0.3502 | 340  | 0.043         | -      | -                                     |
| 0.3605 | 350  | 0.035         | -      | -                                     |
| 0.3708 | 360  | 0.0212        | -      | -                                     |
| 0.3811 | 370  | 0.0171        | -      | -                                     |
| 0.3913 | 380  | 0.0497        | -      | -                                     |
| 0.4016 | 390  | 0.0294        | 0.0381 | -                                     |
| 0.4119 | 400  | 0.0317        | -      | -                                     |
| 0.4222 | 410  | 0.0571        | -      | -                                     |
| 0.4325 | 420  | 0.0251        | -      | -                                     |
| 0.4428 | 430  | 0.0162        | -      | -                                     |
| 0.4531 | 440  | 0.0504        | -      | -                                     |
| 0.4634 | 450  | 0.0257        | -      | -                                     |
| 0.4737 | 460  | 0.0185        | -      | -                                     |
| 0.4840 | 470  | 0.0414        | -      | -                                     |
| 0.4943 | 480  | 0.016         | -      | -                                     |
| 0.5046 | 490  | 0.0432        | -      | -                                     |
| 0.5149 | 500  | 0.0369        | -      | -                                     |
| 0.5252 | 510  | 0.0115        | -      | -                                     |
| 0.5355 | 520  | 0.034         | -      | -                                     |
| 0.5458 | 530  | 0.0143        | -      | -                                     |
| 0.5561 | 540  | 0.0225        | -      | -                                     |
| 0.5664 | 550  | 0.0185        | -      | -                                     |
| 0.5767 | 560  | 0.0085        | -      | -                                     |
| 0.5870 | 570  | 0.0262        | -      | -                                     |
| 0.5973 | 580  | 0.0465        | -      | -                                     |
| 0.6025 | 585  | -             | 0.0541 | -                                     |
| 0.6076 | 590  | 0.0121        | -      | -                                     |
| 0.6179 | 600  | 0.0256        | -      | -                                     |
| 0.6282 | 610  | 0.0203        | -      | -                                     |
| 0.6385 | 620  | 0.0301        | -      | -                                     |
| 0.6488 | 630  | 0.017         | -      | -                                     |
| 0.6591 | 640  | 0.0321        | -      | -                                     |
| 0.6694 | 650  | 0.0087        | -      | -                                     |
| 0.6797 | 660  | 0.0276        | -      | -                                     |
| 0.6900 | 670  | 0.0043        | -      | -                                     |
| 0.7003 | 680  | 0.0063        | -      | -                                     |
| 0.7106 | 690  | 0.0293        | -      | -                                     |
| 0.7209 | 700  | 0.01          | -      | -                                     |
| 0.7312 | 710  | 0.0121        | -      | -                                     |
| 0.7415 | 720  | 0.0164        | -      | -                                     |
| 0.7518 | 730  | 0.0052        | -      | -                                     |
| 0.7621 | 740  | 0.0271        | -      | -                                     |
| 0.7724 | 750  | 0.0363        | -      | -                                     |
| 0.7827 | 760  | 0.0523        | -      | -                                     |
| 0.7930 | 770  | 0.0153        | -      | -                                     |
| 0.8033 | 780  | 0.015         | 0.0513 | -                                     |
| 0.8136 | 790  | 0.0042        | -      | -                                     |
| 0.8239 | 800  | 0.0088        | -      | -                                     |
| 0.8342 | 810  | 0.0217        | -      | -                                     |
| 0.8445 | 820  | 0.0345        | -      | -                                     |
| 0.8548 | 830  | 0.01          | -      | -                                     |
| 0.8651 | 840  | 0.0243        | -      | -                                     |
| 0.8754 | 850  | 0.0074        | -      | -                                     |
| 0.8857 | 860  | 0.0082        | -      | -                                     |
| 0.8960 | 870  | 0.0104        | -      | -                                     |
| 0.9063 | 880  | 0.0078        | -      | -                                     |
| 0.9166 | 890  | 0.0163        | -      | -                                     |
| 0.9269 | 900  | 0.0168        | -      | -                                     |
| 0.9372 | 910  | 0.0088        | -      | -                                     |
| 0.9475 | 920  | 0.0186        | -      | -                                     |
| 0.9578 | 930  | 0.0055        | -      | -                                     |
| 0.9681 | 940  | 0.0142        | -      | -                                     |
| 0.9784 | 950  | 0.0251        | -      | -                                     |
| 0.9887 | 960  | 0.0468        | -      | -                                     |
| 0.9990 | 970  | 0.0031        | -      | -                                     |
| 1.0    | 971  | -             | -      | 0.9791                                |


### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.3.0+cu121
- Accelerate: 0.31.0
- Datasets: 2.19.2
- Tokenizers: 0.19.1

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply}, 
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->