Whisper Large-v2 Java - HQ TTS
This model is a fine-tuned version of openai/whisper-large-v2 on the jv_id_tts dataset. It achieves the following results on the evaluation set:
- Loss: 0.1792
- Wer: 9.2409
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 4
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- training_steps: 10000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.2752 | 0.8587 | 1000 | 0.2629 | 18.0899 |
0.1117 | 1.7170 | 2000 | 0.2091 | 14.7071 |
0.0656 | 2.5754 | 3000 | 0.1855 | 12.2112 |
0.0294 | 3.4337 | 4000 | 0.1709 | 10.8911 |
0.0182 | 4.2920 | 5000 | 0.1662 | 10.4992 |
0.01 | 5.1503 | 6000 | 0.1709 | 10.0660 |
0.0084 | 6.0086 | 7000 | 0.1681 | 9.6328 |
0.0057 | 6.8673 | 8000 | 0.1689 | 9.0965 |
0.0019 | 7.7256 | 9000 | 0.1780 | 9.2409 |
0.0005 | 8.5839 | 10000 | 0.1792 | 9.2409 |
Framework versions
- Transformers 4.51.3
- Pytorch 2.7.0+cu126
- Datasets 2.18.0
- Tokenizers 0.21.1
- Downloads last month
- 3
Model tree for bagasshw/whisper-large-v2
Base model
openai/whisper-large-v2