File size: 1,196 Bytes
6315a0d ef2b33e eaa54e4 ef2b33e 6315a0d ef2b33e 6315a0d 0c3ee37 6315a0d eaa54e4 ef2b33e 51418ff ef2b33e 51418ff eaa54e4 6315a0d 0c3ee37 6315a0d 0c3ee37 eaa54e4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 |
---
library_name: transformers
language:
- en
metrics:
- accuracy: 62.3 % accuracy on the 2-label liar test set.
pipeline_tag: text-classification
---
# Model Card for Model ID
This model classifies news statements as true or false.
## Model Details
### Model Description
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Finetuned from model:** https://huggingface.co/stabilityai/stablelm-2-zephyr-1_6b.
## How to Get Started with the Model
Use the code below to get started with the model.
```python
from peft import AutoPeftModelForCausalLM
from transformers import AutoTokenizer
model = AutoPeftModelForCausalLM.from_pretrained("baris-yazici/liar_stabilityai_stablelm-2-zephyr-1_6b_PROMPT_TUNING_CAUSAL_LM").to("cuda")
tokenizer = AutoTokenizer.from_pretrained("stabilityai/stablelm-2-zephyr-1_6b")
```
## Training Details
### Training Data
The liar dataset can be accessed from: https://huggingface.co/datasets/liar.
### Training Procedure
Prompt tuning was used: https://huggingface.co/docs/peft/task_guides/prompt_based_methods).
Trained on 2 epochs due to computational limitations.
|