ModernBERT-base trained on GooAQ
This is a Cross Encoder model finetuned from answerdotai/ModernBERT-base using the sentence-transformers library. It computes scores for pairs of texts, which can be used for text reranking and semantic search.
Model Details
Model Description
- Model Type: Cross Encoder
- Base model: answerdotai/ModernBERT-base
- Maximum Sequence Length: 8192 tokens
- Number of Output Labels: 1 label
- Language: en
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Documentation: Cross Encoder Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Cross Encoders on Hugging Face
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import CrossEncoder
# Download from the ๐ค Hub
model = CrossEncoder("baseten-admin/reranker-ModernBERT-base-gooaq-bce")
# Get scores for pairs of texts
pairs = [
['how to put your phone on do not disturb on iphone?', 'Go to Settings > Do Not Disturb to turn on Do Not Disturb manually or set a schedule. to turn it on or off.'],
['how to put your phone on do not disturb on iphone?', "This icon means that your iPhone's Do Not Disturb feature is enabled."],
['how to put your phone on do not disturb on iphone?', 'About Do Not Disturb The Do Not Disturb option on the iPhone stops notifications, alerts and calls from making any noise, vibration or lighting up the phone screen when the screen is locked.'],
['how to put your phone on do not disturb on iphone?', 'Go to Settings > Do Not Disturb to turn on Do Not Disturb manually or set a schedule. to turn it on or off. If you set an alarm in the Clock app, the alarm goes off even when Do Not Disturb is on. Learn how to set and manage your alarms.'],
['how to put your phone on do not disturb on iphone?', "You can use the Do Not Disturb feature on your iPhone whenever you want to block any calls, texts, or other notifications from making your phone ring. The notifications and alerts will still be stored on your phone, and you can check them at any time, but your iPhone won't light up or ring."],
]
scores = model.predict(pairs)
print(scores.shape)
# (5,)
# Or rank different texts based on similarity to a single text
ranks = model.rank(
'how to put your phone on do not disturb on iphone?',
[
'Go to Settings > Do Not Disturb to turn on Do Not Disturb manually or set a schedule. to turn it on or off.',
"This icon means that your iPhone's Do Not Disturb feature is enabled.",
'About Do Not Disturb The Do Not Disturb option on the iPhone stops notifications, alerts and calls from making any noise, vibration or lighting up the phone screen when the screen is locked.',
'Go to Settings > Do Not Disturb to turn on Do Not Disturb manually or set a schedule. to turn it on or off. If you set an alarm in the Clock app, the alarm goes off even when Do Not Disturb is on. Learn how to set and manage your alarms.',
"You can use the Do Not Disturb feature on your iPhone whenever you want to block any calls, texts, or other notifications from making your phone ring. The notifications and alerts will still be stored on your phone, and you can check them at any time, but your iPhone won't light up or ring.",
]
)
# [{'corpus_id': ..., 'score': ...}, {'corpus_id': ..., 'score': ...}, ...]
Evaluation
Metrics
Cross Encoder Reranking
- Dataset:
gooaq-dev
- Evaluated with
CrossEncoderRerankingEvaluator
with these parameters:{ "at_k": 10, "always_rerank_positives": false }
Metric | Value |
---|---|
map | 0.7246 (+0.1935) |
mrr@10 | 0.7232 (+0.1992) |
ndcg@10 | 0.7671 (+0.1759) |
Cross Encoder Reranking
- Datasets:
NanoMSMARCO_R100
,NanoNFCorpus_R100
andNanoNQ_R100
- Evaluated with
CrossEncoderRerankingEvaluator
with these parameters:{ "at_k": 10, "always_rerank_positives": true }
Metric | NanoMSMARCO_R100 | NanoNFCorpus_R100 | NanoNQ_R100 |
---|---|---|---|
map | 0.4258 (-0.0638) | 0.3246 (+0.0636) | 0.4195 (-0.0001) |
mrr@10 | 0.4133 (-0.0642) | 0.5233 (+0.0235) | 0.4245 (-0.0022) |
ndcg@10 | 0.4863 (-0.0541) | 0.3615 (+0.0364) | 0.5073 (+0.0067) |
Cross Encoder Nano BEIR
- Dataset:
NanoBEIR_R100_mean
- Evaluated with
CrossEncoderNanoBEIREvaluator
with these parameters:{ "dataset_names": [ "msmarco", "nfcorpus", "nq" ], "rerank_k": 100, "at_k": 10, "always_rerank_positives": true }
Metric | Value |
---|---|
map | 0.3899 (-0.0001) |
mrr@10 | 0.4537 (-0.0143) |
ndcg@10 | 0.4517 (-0.0036) |
Training Details
Training Dataset
Unnamed Dataset
- Size: 578,402 training samples
- Columns:
question
,answer
, andlabel
- Approximate statistics based on the first 1000 samples:
question answer label type string string int details - min: 20 characters
- mean: 42.74 characters
- max: 83 characters
- min: 51 characters
- mean: 250.28 characters
- max: 385 characters
- 0: ~82.30%
- 1: ~17.70%
- Samples:
question answer label how to put your phone on do not disturb on iphone?
Go to Settings > Do Not Disturb to turn on Do Not Disturb manually or set a schedule. to turn it on or off.
1
how to put your phone on do not disturb on iphone?
This icon means that your iPhone's Do Not Disturb feature is enabled.
0
how to put your phone on do not disturb on iphone?
About Do Not Disturb The Do Not Disturb option on the iPhone stops notifications, alerts and calls from making any noise, vibration or lighting up the phone screen when the screen is locked.
0
- Loss:
BinaryCrossEntropyLoss
with these parameters:{ "activation_fn": "torch.nn.modules.linear.Identity", "pos_weight": 5 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 16per_device_eval_batch_size
: 16learning_rate
: 2e-05num_train_epochs
: 1warmup_ratio
: 0.1seed
: 12bf16
: Truedataloader_num_workers
: 4load_best_model_at_end
: True
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 1max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 12data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 4dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}tp_size
: 0fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | gooaq-dev_ndcg@10 | NanoMSMARCO_R100_ndcg@10 | NanoNFCorpus_R100_ndcg@10 | NanoNQ_R100_ndcg@10 | NanoBEIR_R100_mean_ndcg@10 |
---|---|---|---|---|---|---|---|
-1 | -1 | - | 0.1394 (-0.4518) | 0.0204 (-0.5200) | 0.2531 (-0.0719) | 0.0693 (-0.4313) | 0.1143 (-0.3411) |
0.0002 | 1 | 1.2794 | - | - | - | - | - |
0.2213 | 1000 | 0.8021 | - | - | - | - | - |
0.4426 | 2000 | 0.5164 | - | - | - | - | - |
0.6639 | 3000 | 0.4769 | - | - | - | - | - |
0.8852 | 4000 | 0.4613 | 0.7671 (+0.1759) | 0.4863 (-0.0541) | 0.3615 (+0.0364) | 0.5073 (+0.0067) | 0.4517 (-0.0036) |
-1 | -1 | - | 0.7671 (+0.1759) | 0.4863 (-0.0541) | 0.3615 (+0.0364) | 0.5073 (+0.0067) | 0.4517 (-0.0036) |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.11.11
- Sentence Transformers: 4.0.2
- Transformers: 4.50.0
- PyTorch: 2.6.0+cu124
- Accelerate: 1.5.2
- Datasets: 3.4.1
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
- Downloads last month
- 4
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for baseten-admin/reranker-ModernBERT-base-gooaq-bce
Base model
answerdotai/ModernBERT-baseEvaluation results
- Map on gooaq devself-reported0.725
- Mrr@10 on gooaq devself-reported0.723
- Ndcg@10 on gooaq devself-reported0.767
- Map on NanoMSMARCO R100self-reported0.426
- Mrr@10 on NanoMSMARCO R100self-reported0.413
- Ndcg@10 on NanoMSMARCO R100self-reported0.486
- Map on NanoNFCorpus R100self-reported0.325
- Mrr@10 on NanoNFCorpus R100self-reported0.523
- Ndcg@10 on NanoNFCorpus R100self-reported0.361
- Map on NanoNQ R100self-reported0.419