Batu Ergun's picture
6

Batu Ergun

batuergun

AI & ML interests

None yet

Recent Activity

Organizations

Kali's profile picture Privacy Preserving AI Hackathon (Zama, Hugging Face, Entrepreneur First)'s profile picture

batuergun's activity

reacted to merve's post with πŸš€ 18 days ago
view post
Post
4782
supercharge your LLM apps with smolagents πŸ”₯

however cool your LLM is, without being agentic it can only go so far

enter smolagents: a new agent library by Hugging Face to make the LLM write code, do analysis and automate boring stuff!

Here's our blog for you to get started https://huggingface.co/blog/smolagents
reacted to lewtun's post with πŸš€ about 1 month ago
view post
Post
6740
We outperform Llama 70B with Llama 3B on hard math by scaling test-time compute πŸ”₯

How? By combining step-wise reward models with tree search algorithms :)

We show that smol models can match or exceed the performance of their much larger siblings when given enough "time to think"

We're open sourcing the full recipe and sharing a detailed blog post.

In our blog post we cover:

πŸ“ˆ Compute-optimal scaling: How we implemented DeepMind's recipe to boost the mathematical capabilities of open models at test-time.

πŸŽ„ Diverse Verifier Tree Search (DVTS): An unpublished extension we developed to the verifier-guided tree search technique. This simple yet effective method improves diversity and delivers better performance, particularly at large test-time compute budgets.

🧭 Search and Learn: A lightweight toolkit for implementing search strategies with LLMs and built for speed with vLLM

Here's the links:

- Blog post: HuggingFaceH4/blogpost-scaling-test-time-compute

- Code: https://github.com/huggingface/search-and-learn

Enjoy!
  • 2 replies
Β·
reacted to merve's post with πŸš€ about 1 month ago
view post
Post
3348
Apollo is a new family of open-source video language models by Meta, where 3B model outperforms most 7B models and 7B outperforms most 30B models 🧢

✨ the models come in 1.5B https://huggingface.co/Apollo-LMMs/Apollo-1_5B-t32, 3B https://huggingface.co/Apollo-LMMs/Apollo-3B-t32 and 7B https://huggingface.co/Apollo-LMMs/Apollo-7B-t32 with A2.0 license, based on Qwen1.5 & Qwen2
✨ the authors also release a benchmark dataset https://huggingface.co/spaces/Apollo-LMMs/ApolloBench

The paper has a lot of experiments (they trained 84 models!) about what makes the video LMs work ⏯️

Try the demo for best setup here https://huggingface.co/spaces/Apollo-LMMs/Apollo-3B
they evaluate sampling strategies, scaling laws for models and datasets, video representation and more!
> The authors find out that whatever design decision was applied to small models also scale properly when the model and dataset are scaled πŸ“ˆ scaling dataset has diminishing returns for smaller models
> They evaluate frame sampling strategies, and find that FPS sampling is better than uniform sampling, and they find 8-32 tokens per frame optimal
> They also compare image encoders, they try a variation of models from shape optimized SigLIP to DINOv2
they find google/siglip-so400m-patch14-384 to be most powerful πŸ”₯
> they also compare freezing different parts of models, training all stages with some frozen parts give the best yield

They eventually release three models, where Apollo-3B outperforms most 7B models and Apollo 7B outperforms 30B models πŸ”₯
Β·
reacted to clem's post with πŸš€ about 1 month ago
view post
Post
1889
Coming back to Paris Friday to open our new Hugging Face office!

We're at capacity for the party but add your name in the waiting list as we're trying to privatize the passage du Caire for extra space for robots πŸ€–πŸ¦ΎπŸ¦Ώ

https://t.co/enkFXjWndJ
  • 1 reply
Β·