whisper-medium-mn-10

This model is a fine-tuned version of openai/whisper-medium on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2103
  • Wer: 21.2585
  • Cer: 6.8756

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 40000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Cer Validation Loss Wer
0.4197 0.09 1000 19.0947 0.4462 53.9600
0.3288 0.17 2000 14.8016 0.3468 44.2102
0.2737 0.26 3000 12.3471 0.3020 36.1700
0.2558 0.35 4000 11.7171 0.2824 34.1709
0.2406 0.43 5000 10.3551 0.2594 31.1230
0.218 0.52 6000 9.7815 0.2452 29.6865
0.2253 0.61 7000 9.6712 0.2344 29.2932
0.2071 0.69 8000 9.4261 0.2283 28.5067
0.2051 0.78 9000 9.0656 0.2224 27.4033
0.2064 0.87 10000 8.7851 0.2138 26.7206
0.193 0.95 11000 8.5021 0.2089 25.5790
0.1577 1.04 12000 8.2873 0.2072 25.6118
0.1397 1.13 13000 8.2368 0.2046 25.1147
0.1526 1.21 14000 8.7615 0.2065 26.4638
0.1497 1.3 15000 0.2004 24.4866 7.9588
0.1569 1.39 16000 0.1990 24.2244 7.9554
0.1416 1.47 17000 0.2001 24.2298 7.8754
0.1371 1.56 18000 0.1932 23.6072 7.8072
0.1379 1.65 19000 0.1916 23.1320 7.5452
0.1305 1.73 20000 0.1880 23.1101 7.4290
0.1395 1.82 21000 0.1877 22.9845 7.4635
0.1418 1.91 22000 0.1862 22.9080 7.5907
0.1432 1.99 23000 0.1847 22.7114 7.4290
0.0965 2.08 24000 0.1931 21.7391 7.0399
0.0723 2.17 25000 0.1961 22.3236 7.2698
0.0773 2.25 26000 0.1977 22.0505 7.0752
0.0862 2.34 27000 0.1959 21.9522 7.0820
0.0739 2.43 28000 0.1982 21.7719 7.1494
0.0843 2.51 29000 0.1963 21.8921 7.1241
0.0734 2.6 30000 0.1980 21.7883 7.1317
0.0785 2.69 31000 0.1955 21.8757 7.1948
0.0691 2.77 32000 0.1978 21.7446 7.0938
0.0834 2.86 33000 0.1953 21.3240 7.0121
0.0675 2.95 34000 0.1958 21.7719 7.0769
0.042 3.03 35000 0.2053 21.3404 6.9624
0.0474 3.12 36000 0.2097 21.5534 7.0306
0.0428 3.21 37000 0.2107 21.3185 6.9809
0.0343 3.29 38000 0.2111 21.3896 6.9514
0.0378 3.38 39000 0.2103 21.2585 6.8756
0.0361 3.47 40000 0.2106 21.3677 6.9009

Framework versions

  • Transformers 4.26.0.dev0
  • Pytorch 1.13.0+cu117
  • Datasets 2.7.1.dev0
  • Tokenizers 0.13.2
Downloads last month
27
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Datasets used to train bayartsogt/whisper-medium-mn-10

Collection including bayartsogt/whisper-medium-mn-10

Evaluation results