SentenceTransformer based on intfloat/multilingual-e5-large-instruct
This is a sentence-transformers model finetuned from intfloat/multilingual-e5-large-instruct. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: intfloat/multilingual-e5-large-instruct
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 1024 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("belyakoff/puzzle-search-model")
# Run inference
sentences = [
'с помощью bash скрипта узнать все рабочие процессы. В цикле начать их обходить. Если процесс начинается на цифру, то остановить его. В файле delete_processes.txt дописать имя закрытого процесса',
'Дописать в файл. describe: Дописывает текст в конец указанного текстового или json-файла..Блок дописывает текст в конец указанного текстового или json-файла..В конец текстового файла с расширением txt или json дописать текст\nПримеры\nДобавить в текстовый файл\nДописать текст в файл',
'Переключиться на процесс. describe: Блок позволяет подключиться к запущенному процессу «1С», для дальнейшего взаимодействия с программой..Если толстый клиент 1с открыт, но был свернут, этот блок может вернуть в фокус 1с предприятие. ',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Dataset
Unnamed Dataset
- Size: 1,413 training samples
- Columns:
anchor
andpositive
- Approximate statistics based on the first 1000 samples:
anchor positive type string string details - min: 15 tokens
- mean: 82.45 tokens
- max: 326 tokens
- min: 42 tokens
- mean: 216.75 tokens
- max: 512 tokens
- Samples:
anchor positive 1. Авторизация в 1С-веб
2. Переключиться на страницу Файлы. Перейти в раздел документации.
3. Скачивание файла, сохранение на диск с проверкой SSL-сертификата, если это предусмотрено параметромssl_verify
.
4. Применение алгоритма сжатия к PDF-файлу, с конвертацией в оттенки серого и сохранением текстового слоя.
5. Сохранения сжатого файла в заданную директорию по путиdirectory_path
.
6. уведомление об успешном скачивании, сжатии PDF-файла и сохранении с указанием размеров файлов до и после операции сжатия.Добавить фильтр 1С-веб. describe: Позволяет выбрать один или несколько вариантов для открытия страницы/переключения на страницу..Блок “Добавить фильтр 1С-веб” позволяет выбрать один или несколько вариантов для открытия страницы/переключения на страницу:Ссылка на страницу;Название страницы равно;Название страницы содержит;Название страницы не содержит.В разъем следует поместить текстовый блок с искомым названием/ссылкой..Открыть документ, справочник, отчет или любую другую форму в 1с предприятии в браузере. Нужно указать или навигационную ссылку или название формы
1. открыть 1с
2. авторизоваться в 1с
3. открыть пункт меню Инструкции 2025 с помощью блока поиска. В поле имя указать «содержит» «Инструкции + currentYear()»
4. Нажать кнопку открыть и скачать последний файл
5. Открыть файл
6. Перевернуть страницу, если ориентация не равна 0 градусов
7. если файл был изменен, сохранить его в 1с как новую версию.Добавить фильтр 1С-веб. describe: Позволяет выбрать один или несколько вариантов для открытия страницы/переключения на страницу..Блок “Добавить фильтр 1С-веб” позволяет выбрать один или несколько вариантов для открытия страницы/переключения на страницу:Ссылка на страницу;Название страницы равно;Название страницы содержит;Название страницы не содержит.В разъем следует поместить текстовый блок с искомым названием/ссылкой..Открыть документ, справочник, отчет или любую другую форму в 1с предприятии в браузере. Нужно указать или навигационную ссылку или название формы
1. открыть 1с. Авторизоваться
2. открыть раздел «Пользователи» установив фильтр по равенству страница = Пользователи
3. открыть список пользователей отдела Консолидированной отчетности
4. выгрузить справочник в виде таблицы — колонки: имя пользователя, СНИЛС
5. преобразовать снилс из строки в число, и получить сумму цифр
6. запустить процесс airflow, который будет раз в час искать в базе данных postgres, в таблице Emploers, все записи, с фильтром снилс, взятый из п5. Если записей не будет , вызвать исключениеДобавить фильтр 1С-веб. describe: Позволяет выбрать один или несколько вариантов для открытия страницы/переключения на страницу..Блок “Добавить фильтр 1С-веб” позволяет выбрать один или несколько вариантов для открытия страницы/переключения на страницу:Ссылка на страницу;Название страницы равно;Название страницы содержит;Название страницы не содержит.В разъем следует поместить текстовый блок с искомым названием/ссылкой..Открыть документ, справочник, отчет или любую другую форму в 1с предприятии в браузере. Нужно указать или навигационную ссылку или название формы
- Loss:
GISTEmbedLoss
with these parameters:{'guide': SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ), 'temperature': 0.03}
Training Hyperparameters
Non-Default Hyperparameters
per_device_train_batch_size
: 4learning_rate
: 1e-05num_train_epochs
: 50dataloader_drop_last
: Truebatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: noprediction_loss_only
: Trueper_device_train_batch_size
: 4per_device_eval_batch_size
: 8per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 1e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 50max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Truedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Framework Versions
- Python: 3.10.16
- Sentence Transformers: 4.0.1
- Transformers: 4.49.0
- PyTorch: 2.6.0+cu124
- Accelerate: 1.4.0
- Datasets: 3.3.2
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
GISTEmbedLoss
@misc{solatorio2024gistembed,
title={GISTEmbed: Guided In-sample Selection of Training Negatives for Text Embedding Fine-tuning},
author={Aivin V. Solatorio},
year={2024},
eprint={2402.16829},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
- Downloads last month
- 3
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for belyakoff/puzzle-search-model
Base model
intfloat/multilingual-e5-large-instruct