metadata
base_model:
- benhaotang/Phi-4-llama-t1-full
- prithivMLmods/Phi-4-QwQ
- win10/Phi-4-llama-t1-lora
library_name: transformers
tags:
- mergekit
- merge
datasets:
- NovaSky-AI/Sky-T1_data_17k
license: mit
merge
This is a merge of pre-trained language models created using mergekit.
Merge Details
Merge Method
This model was merged using the TIES merge method using prithivMLmods/Phi-4-QwQ as a base.
Models Merged
The following models were included in the merge:
- benhaotang/Phi-4-llama-t1-full but actually win10/Phi-4-llama-t1-lora, this is who and where you should really thank.
- prithivMLmods/Phi-4-QwQ
Running
- With Ollama
ollama run hf.co/benhaotang/phi4-qwq-sky-t1-Q4_K_M-GGUF
I suggest adding SYSTEM "You are a helpful AI asistent. You always think step by step."
to triger step by step reasoning.
- With pytorch
import transformers
tokenizer = AutoTokenizer.from_pretrained("mircosoft/phi-4")
pipeline = transformers.pipeline(
"text-generation",
model="benhaotang/phi4-qwq-sky-t1",
tokenizer=tokenizer,
device_map="auto",
)
messages = [
{"role": "system", "content": "You are a helpful AI asistent. You always think step by step."},
{"role": "user", "content": "Give me a short intodcution to renormalization group(RG) flow in physcis?"},
]
outputs = pipeline(messages, max_new_tokens=128)
print(outputs[0]["generated_text"])
Configuration
The following YAML configuration was used to produce this model:
models:
- model: prithivMLmods/Phi-4-QwQ
#no parameters necessary for base model
- model: benhaotang/Phi-4-llama-t1-full
parameters:
density: 0.5
weight: 0.5
- model: prithivMLmods/Phi-4-QwQ
parameters:
density: 0.5
weight: 0.5
merge_method: ties
base_model: prithivMLmods/Phi-4-QwQ
parameters:
normalize: false
int8_mask: true
dtype: float16