flux-test / README.md
bghira's picture
Model card auto-generated by SimpleTuner
fac612b verified
---
license: other
base_model: "black-forest-labs/FLUX.1-dev"
tags:
- flux
- flux-diffusers
- text-to-image
- diffusers
- simpletuner
- not-for-all-audiences
- lora
- template:sd-lora
- lycoris
inference: true
widget:
- text: 'unconditional (blank prompt)'
parameters:
negative_prompt: 'blurry, cropped, ugly'
output:
url: ./assets/image_0_0.png
- text: 'a garfield waifu wearing an apron with a red sphere over her head that reads It is Time'
parameters:
negative_prompt: 'blurry, cropped, ugly'
output:
url: ./assets/image_1_0.png
- text: 'a void of fursuit furries hanging onto the edge of reality as they get sucked into a vortex'
parameters:
negative_prompt: 'blurry, cropped, ugly'
output:
url: ./assets/image_2_0.png
- text: 'furries congregate at walmart to teach about gelatin fountains to adult furries'
parameters:
negative_prompt: 'blurry, cropped, ugly'
output:
url: ./assets/image_3_0.png
- text: 'the furry church congregation looking up at a cinematic movie screen with text on it that reads MOOSE = PONY'
parameters:
negative_prompt: 'blurry, cropped, ugly'
output:
url: ./assets/image_4_0.png
- text: 'furry church congregation singing hymns while they look to a screen with lyrics on it that reads THE NEW FRONTIER OF PONY MODELS?'
parameters:
negative_prompt: 'blurry, cropped, ugly'
output:
url: ./assets/image_5_0.png
- text: 'a furry giving a TED talk with a screen in the background showing bullet points: - what furry means, and, - what furry does not mean'
parameters:
negative_prompt: 'blurry, cropped, ugly'
output:
url: ./assets/image_6_0.png
- text: 'a sugar bear named brownie plays basketball with lumps of poop'
parameters:
negative_prompt: 'blurry, cropped, ugly'
output:
url: ./assets/image_7_0.png
- text: 'A photo-realistic image of a cat'
parameters:
negative_prompt: 'blurry, cropped, ugly'
output:
url: ./assets/image_8_0.png
---
# flux-test
This is a LyCORIS adapter derived from [black-forest-labs/FLUX.1-dev](https://huggingface.co/black-forest-labs/FLUX.1-dev).
The main validation prompt used during training was:
```
A photo-realistic image of a cat
```
## Validation settings
- CFG: `3.0`
- CFG Rescale: `0.0`
- Steps: `20`
- Sampler: `None`
- Seed: `42`
- Resolution: `1024x1024`
Note: The validation settings are not necessarily the same as the [training settings](#training-settings).
You can find some example images in the following gallery:
<Gallery />
The text encoder **was not** trained.
You may reuse the base model text encoder for inference.
## Training settings
- Training epochs: 0
- Training steps: 400
- Learning rate: 0.0002
- Effective batch size: 9
- Micro-batch size: 1
- Gradient accumulation steps: 3
- Number of GPUs: 3
- Prediction type: flow-matching
- Rescaled betas zero SNR: False
- Optimizer: soap
- Precision: Pure BF16
- Quantised: Yes: int8-quanto
- Xformers: Not used
- LyCORIS Config:
```json
{
"algo": "lokr",
"bypass_mode": true,
"multiplier": 1.0,
"linear_dim": 10000,
"linear_alpha": 1,
"factor": 8,
"apply_preset": {
"target_module": [
"Attention",
"FeedForward"
],
"module_algo_map": {
"Attention": {
"factor": 8
},
"FeedForward": {
"factor": 6
}
}
}
}
```
## Datasets
### sfwbooru
- Repeats: 0
- Total number of images: ~638952
- Total number of aspect buckets: 59
- Resolution: 1.048576 megapixels
- Cropped: False
- Crop style: None
- Crop aspect: None
## Inference
```python
import torch
from diffusers import DiffusionPipeline
from lycoris import create_lycoris_from_weights
model_id = 'black-forest-labs/FLUX.1-dev'
adapter_id = 'pytorch_lora_weights.safetensors' # you will have to download this manually
lora_scale = 1.0
wrapper, _ = create_lycoris_from_weights(lora_scale, adapter_id, pipeline.transformer)
wrapper.merge_to()
prompt = "A photo-realistic image of a cat"
pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu')
image = pipeline(
prompt=prompt,
num_inference_steps=20,
generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(1641421826),
width=1024,
height=1024,
guidance_scale=3.0,
).images[0]
image.save("output.png", format="PNG")
```