bi-matrix/gmatrix-embedding
ํด๋น ๋ชจ๋ธ์ KF-DeBERTa ๋ชจ๋ธ๊ณผ KorSTS, KorNLI ๋ฐ์ดํฐ์ ์ ํ์ฉํ์์ผ๋ฉฐ, sentence-transformers์ ๊ณต์ ๋ฌธ์ ๋ด ์๊ฐ๋ continue-learning ๋ฐฉ๋ฒ์ ํตํด ์๋์ ๊ฐ์ด ํ์ต๋์์ต๋๋ค.
- NLI ๋ฐ์ดํฐ์ ์ ํตํด nagative sampling ํ MultipleNegativeRankingLoss ํ์ฉ ๋ฐ STS ๋ฐ์ดํฐ์ ์ ํตํด CosineSimilarityLoss๋ฅผ ํ์ฉํ์ฌ Multi-task Learning ํ์ต 10epoch ์งํ
- Learning Rate๋ฅผ 1e-06์ผ๋ก ์ค์ฌ์ 4epoch ์ถ๊ฐ Multi-task ํ์ต ์งํ
This is a sentence-transformers model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
Usage (Sentence-Transformers)
Using this model becomes easy when you have sentence-transformers installed:
pip install -U sentence-transformers
Then you can use the model like this:
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer("bi-matrix/gmatrix-embedding")
embeddings = model.encode(sentences)
print(embeddings)
Usage (HuggingFace Transformers)
Without sentence-transformers, you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
from transformers import AutoTokenizer, AutoModel
import torch
#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
# Sentences we want sentence embeddings for
sentences = ['This is an example sentence', 'Each sentence is converted']
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained("bi-matrix/gmatrix-embedding")
model = AutoModel.from_pretrained("bi-matrix/gmatrix-embedding")
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# Perform pooling. In this case, mean pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
Evaluation Results
KorSTS ํ๊ฐ ๋ฐ์ดํฐ์ ์ผ๋ก ํ๊ฐํ ๊ฒฐ๊ณผ์ ๋๋ค.
- Cosine Pearson: 85.77
- Cosine Spearman: 86.30
- Manhattan Pearson: 84.84
- Manhattan Spearman: 85.33
- Euclidean Pearson: 84.82
- Euclidean Spearman: 85.29
- Dot Pearson: 83.19
- Dot Spearman: 83.19
model | cosine_pearson | cosine_spearman | euclidean_pearson | euclidean_spearman | manhattan_pearson | manhattan_spearman | dot_pearson | dot_spearman |
---|---|---|---|---|---|---|---|---|
gmatrix-embedding | 85.77 | 86.30 | 84.82 | 85.29 | 84.84 | 85.33 | 83.19 | 83.19 |
kf-deberta-multitask | 85.75 | 86.25 | 84.79 | 85.25 | 84.80 | 85.27 | 82.93 | 82.86 |
ko-sroberta-multitask | 84.77 | 85.6 | 83.71 | 84.40 | 83.70 | 84.38 | 82.42 | 82.33 |
ko-sbert-multitask | 84.13 | 84.71 | 82.42 | 82.66 | 82.41 | 82.69 | 80.05 | 79.69 |
ko-sroberta-base-nli | 82.83 | 83.85 | 82.87 | 83.29 | 82.88 | 83.28 | 80.34 | 79.69 |
ko-sbert-nli | 82.24 | 83.16 | 82.19 | 82.31 | 82.18 | 82.3 | 79.3 | 78.78 |
ko-sroberta-sts | 81.84 | 81.82 | 81.15 | 81.25 | 81.14 | 81.25 | 79.09 | 78.54 |
ko-sbert-sts | 81.55 | 81.23 | 79.94 | 79.79 | 79.9 | 79.75 | 76.02 | 75.31 |
G-MATRIX Embedding ๋ฐ์ดํฐ์ ์ธก์ ๊ฒฐ๊ณผ์ ๋๋ค. ์ฌ๋ 3๋ช ์ด์ 0~5์ ์ผ๋ก ๋ ๋ฌธ์ฅ๊ฐ์ ์ ์ฌ๋๋ฅผ ์ธก์ ํ์ฌ ์ ์๋ฅผ ๋ด๊ณ ํ๊ท ์ ๊ตฌํ์ฌ ๊ฐ ๋ชจ๋ธ์ ์๋ฒ ๋ฉ๊ฐ์ ํตํด
์ฝ์ฌ์ธ ์ ์ฌ๋, ์ ํด๋ฆฌ๋์ ๊ฑฐ๋ฆฌ, ๋งจํํ ๊ฑฐ๋ฆฌ, Dot-product๋ฅผ ๊ตฌํ์ฌ ํผ์ด์จ, ์คํผ์ด๋ง ์๊ด๊ณ์๋ฅผ ๊ตฌํ ๊ฐ์ ๋๋ค.
- Cosine Pearson: 75.86
- Cosine Spearman: 65.75
- Manhattan Pearson: 72.65
- Manhattan Spearman: 65.20
- Euclidean Pearson: 72.48
- Euclidean Spearman: 65.32
- Dot Pearson: 64.71
- Dot Spearman: 53.90
model | cosine_pearson | cosine_spearman | euclidean_pearson | euclidean_spearman | manhattan_pearson | manhattan_spearman | dot_pearson | dot_spearman |
---|---|---|---|---|---|---|---|---|
gmatrix-embedding | 75.86 | 65.75 | 72.65 | 65.20 | 72.48 | 65.32 | 64.71 | 53.90 |
ko-sroberta-multitask | 71.78 | 63.16 | 70.80 | 63.47 | 70.89 | 63.72 | 53.57 | 44.23 |
bge-m3 | 64.15 | 60.65 | 61.88 | 60.68 | 61.88 | 60.19 | 64.16 | 60.71 |
G-MATRIX Embedding ๋ ์ด๋ธ๋ง ํ๋จ ๊ธฐ์ค (KLUE-RoBERTa์ STS ๋ฐ์ดํฐ ์์ฑ ์ฐธ๊ณ )
- ๋ ๋ฌธ์ฅ์ ์ ์ฌํ ์ ๋๋ฅผ ๋ณด๊ณ 0~5์ ์ผ๋ก ํ๋จ
- ๋ง์ถค๋ฒ, ๋์ด์ฐ๊ธฐ, ์จ์ ์ด๋ ์ผํ ์ฐจ์ด๋ ํ๋จ ๋์์ด ์๋
- ๋ฌธ์ฅ์ ์๋, ํํ์ด ๋ด๊ณ ์๋ ์๋ฏธ๋ฅผ ๋น๊ต
- ๋ ๋ฌธ์ฅ์ ๊ณตํต์ ์ผ๋ก ์ฌ์ฉ๋ ๋จ์ด์ ์ ๋ฌด๋ฅผ ์ฐพ๋ ๊ฒ์ด ์๋, ๋ฌธ์ฅ์ ์๋ฏธ๊ฐ ์ ์ฌํ์ง๋ฅผ ๋น๊ต
- 0์ ์๋ฏธ์ ์ ์ฌ์ฑ์ด ์๋ ๊ฒฝ์ฐ์ด๊ณ , 5๋ ์๋ฏธ์ ์ผ๋ก ๋๋ฑํจ์ ๋ปํจ
Training
The model was trained with the parameters:
DataLoader:
torch.utils.data.dataloader.DataLoader
of length 329 with parameters:
{'batch_size': 32, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
Loss:
sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': True}) with Transformer model: DeBERTaV2Model
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
Citing & Authors
[MINSANG SONG] at BI-Matrix
- Downloads last month
- 705