whisper_input_decoder_shift_r_labels_with_force__0010

This model is a fine-tuned version of openai/whisper-tiny on an unknown dataset. It achieves the following results on the evaluation set:

  • Train Loss: 3.6763
  • Train Accuracy: 0.0136
  • Train Wermet: 0.7543
  • Validation Loss: 3.3183
  • Validation Accuracy: 0.0116
  • Validation Wermet: 0.8678
  • Epoch: 9

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
  • training_precision: float32

Training results

Train Loss Train Accuracy Train Wermet Validation Loss Validation Accuracy Validation Wermet Epoch
5.6249 0.0091 1.7162 4.2965 0.0094 0.9447 0
4.9223 0.0099 0.9041 4.1562 0.0097 0.9327 1
4.6814 0.0107 0.8376 3.9245 0.0103 0.8927 2
4.4407 0.0114 0.8311 3.7252 0.0107 0.8775 3
4.2445 0.0119 0.8228 3.6283 0.0108 0.8695 4
4.0889 0.0123 0.8067 3.5310 0.0110 0.8916 5
3.9575 0.0127 0.7908 3.4478 0.0113 0.8407 6
3.8547 0.0130 0.7781 3.4227 0.0113 0.8670 7
3.7599 0.0133 0.7654 3.3519 0.0115 0.8375 8
3.6763 0.0136 0.7543 3.3183 0.0116 0.8678 9

Framework versions

  • Transformers 4.34.0.dev0
  • TensorFlow 2.13.0
  • Tokenizers 0.13.3
Downloads last month
4
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for bigmorning/whisper_input_decoder_shift_r_labels_with_force__0010

Finetuned
(1591)
this model