whisper_input_decoder_shift_r_labels_with_force__0015

This model is a fine-tuned version of openai/whisper-tiny on an unknown dataset. It achieves the following results on the evaluation set:

  • Train Loss: 3.3218
  • Train Accuracy: 0.0148
  • Train Wermet: 0.6946
  • Validation Loss: 3.1357
  • Validation Accuracy: 0.0122
  • Validation Wermet: 0.7760
  • Epoch: 14

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 1e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01}
  • training_precision: float32

Training results

Train Loss Train Accuracy Train Wermet Validation Loss Validation Accuracy Validation Wermet Epoch
5.6249 0.0091 1.7162 4.2965 0.0094 0.9447 0
4.9223 0.0099 0.9041 4.1562 0.0097 0.9327 1
4.6814 0.0107 0.8376 3.9245 0.0103 0.8927 2
4.4407 0.0114 0.8311 3.7252 0.0107 0.8775 3
4.2445 0.0119 0.8228 3.6283 0.0108 0.8695 4
4.0889 0.0123 0.8067 3.5310 0.0110 0.8916 5
3.9575 0.0127 0.7908 3.4478 0.0113 0.8407 6
3.8547 0.0130 0.7781 3.4227 0.0113 0.8670 7
3.7599 0.0133 0.7654 3.3519 0.0115 0.8375 8
3.6763 0.0136 0.7543 3.3183 0.0116 0.8678 9
3.6006 0.0138 0.7421 3.2581 0.0117 0.8120 10
3.5300 0.0140 0.7296 3.2415 0.0118 0.8257 11
3.4554 0.0143 0.7179 3.2163 0.0119 0.8078 12
3.3930 0.0145 0.7057 3.1612 0.0121 0.7758 13
3.3218 0.0148 0.6946 3.1357 0.0122 0.7760 14

Framework versions

  • Transformers 4.34.0.dev0
  • TensorFlow 2.13.0
  • Tokenizers 0.13.3
Downloads last month
5
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for bigmorning/whisper_input_decoder_shift_r_labels_with_force__0015

Finetuned
(1591)
this model