deberta-base / README.md
binh230's picture
End of training
6d5efd7 verified
metadata
library_name: transformers
license: mit
base_model: microsoft/deberta-v3-base
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: deberta-base
    results: []

deberta-base

This model is a fine-tuned version of microsoft/deberta-v3-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1665
  • Accuracy: 0.9601
  • Precision: 0.9599
  • Recall: 0.9601
  • F1: 0.9594
  • Auroc: 0.9928

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 1
  • label_smoothing_factor: 0.03

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1 Auroc
0.4866 0.0988 256 0.2931 0.8845 0.8939 0.8845 0.8876 0.9465
0.2757 0.1977 512 0.3478 0.8898 0.8984 0.8898 0.8765 0.9544
0.2433 0.2965 768 0.2097 0.9404 0.9413 0.9404 0.9408 0.9799
0.2332 0.3953 1024 0.3548 0.8815 0.8907 0.8815 0.8657 0.9690
0.2152 0.4942 1280 0.1942 0.9440 0.9434 0.9440 0.9426 0.9868
0.1907 0.5930 1536 0.1615 0.9649 0.9647 0.9649 0.9647 0.9899
0.1865 0.6918 1792 0.1556 0.9655 0.9654 0.9655 0.9654 0.9922
0.1865 0.7907 2048 0.2322 0.9369 0.9370 0.9369 0.9344 0.9773
0.168 0.8895 2304 0.1653 0.9672 0.9670 0.9672 0.9668 0.9937
0.1732 0.9883 2560 0.1467 0.9702 0.9716 0.9702 0.9706 0.9935

Framework versions

  • Transformers 4.45.1
  • Pytorch 2.4.0
  • Datasets 3.0.1
  • Tokenizers 0.20.0