vit-finetuned2

This model is a fine-tuned version of microsoft/resnet-18 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8828
  • Accuracy: 0.746

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 64
  • eval_batch_size: 128
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 211 3.2058 0.2
No log 2.0 422 2.7863 0.27
3.5109 3.0 633 2.6225 0.306
3.5109 4.0 844 2.3383 0.392
2.6956 5.0 1055 2.1045 0.456
2.6956 6.0 1266 1.8551 0.504
2.6956 7.0 1477 1.6949 0.54
2.213 8.0 1688 1.5866 0.576
2.213 9.0 1899 1.3373 0.646
1.8406 10.0 2110 1.2958 0.64
1.8406 11.0 2321 1.3066 0.652
1.5618 12.0 2532 1.1972 0.664
1.5618 13.0 2743 1.1654 0.67
1.5618 14.0 2954 1.0900 0.7
1.3308 15.0 3165 1.0244 0.704
1.3308 16.0 3376 1.0534 0.706
1.1426 17.0 3587 0.9758 0.732
1.1426 18.0 3798 0.9583 0.716
1.0085 19.0 4009 0.9191 0.732
1.0085 20.0 4220 0.8828 0.746

Framework versions

  • Transformers 4.51.3
  • Pytorch 2.6.0+cu124
  • Datasets 3.6.0
  • Tokenizers 0.21.1
Downloads last month
16
Safetensors
Model size
11.2M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for binjn/vit-finetuned2

Finetuned
(36)
this model