Model save
Browse files
README.md
CHANGED
@@ -12,62 +12,75 @@ tags:
|
|
12 |
- loss:MultipleNegativesRankingLoss
|
13 |
base_model: BAAI/bge-base-en-v1.5
|
14 |
widget:
|
15 |
-
- source_sentence:
|
16 |
-
provide to its employees in 2023?
|
17 |
sentences:
|
18 |
-
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
and
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
|
|
|
|
|
|
|
|
|
|
27 |
sentences:
|
28 |
-
-
|
29 |
-
|
30 |
-
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
-
|
36 |
-
|
|
|
37 |
sentences:
|
38 |
-
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
|
|
|
|
|
|
|
|
49 |
sentences:
|
50 |
-
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
sentences:
|
59 |
-
-
|
60 |
-
|
61 |
-
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
compared to 2022, as well as an increase in the Health Services segment.
|
69 |
-
- Net income for the year ended December 31, 2023, was $307,568, contrasting with
|
70 |
-
a net loss of $694,288 in 2022.
|
71 |
datasets:
|
72 |
- philschmid/finanical-rag-embedding-dataset
|
73 |
pipeline_tag: sentence-similarity
|
@@ -99,49 +112,49 @@ model-index:
|
|
99 |
type: dim_768
|
100 |
metrics:
|
101 |
- type: cosine_accuracy@1
|
102 |
-
value: 0.
|
103 |
name: Cosine Accuracy@1
|
104 |
- type: cosine_accuracy@3
|
105 |
-
value: 0.
|
106 |
name: Cosine Accuracy@3
|
107 |
- type: cosine_accuracy@5
|
108 |
value: 0.8685714285714285
|
109 |
name: Cosine Accuracy@5
|
110 |
- type: cosine_accuracy@10
|
111 |
-
value: 0.
|
112 |
name: Cosine Accuracy@10
|
113 |
- type: cosine_precision@1
|
114 |
-
value: 0.
|
115 |
name: Cosine Precision@1
|
116 |
- type: cosine_precision@3
|
117 |
-
value: 0.
|
118 |
name: Cosine Precision@3
|
119 |
- type: cosine_precision@5
|
120 |
-
value: 0.
|
121 |
name: Cosine Precision@5
|
122 |
- type: cosine_precision@10
|
123 |
-
value: 0.
|
124 |
name: Cosine Precision@10
|
125 |
- type: cosine_recall@1
|
126 |
-
value: 0.
|
127 |
name: Cosine Recall@1
|
128 |
- type: cosine_recall@3
|
129 |
-
value: 0.
|
130 |
name: Cosine Recall@3
|
131 |
- type: cosine_recall@5
|
132 |
value: 0.8685714285714285
|
133 |
name: Cosine Recall@5
|
134 |
- type: cosine_recall@10
|
135 |
-
value: 0.
|
136 |
name: Cosine Recall@10
|
137 |
- type: cosine_ndcg@10
|
138 |
-
value: 0.
|
139 |
name: Cosine Ndcg@10
|
140 |
- type: cosine_mrr@10
|
141 |
-
value: 0.
|
142 |
name: Cosine Mrr@10
|
143 |
- type: cosine_map@100
|
144 |
-
value: 0.
|
145 |
name: Cosine Map@100
|
146 |
- task:
|
147 |
type: information-retrieval
|
@@ -151,49 +164,49 @@ model-index:
|
|
151 |
type: dim_512
|
152 |
metrics:
|
153 |
- type: cosine_accuracy@1
|
154 |
-
value: 0.
|
155 |
name: Cosine Accuracy@1
|
156 |
- type: cosine_accuracy@3
|
157 |
-
value: 0.
|
158 |
name: Cosine Accuracy@3
|
159 |
- type: cosine_accuracy@5
|
160 |
-
value: 0.
|
161 |
name: Cosine Accuracy@5
|
162 |
- type: cosine_accuracy@10
|
163 |
-
value: 0.
|
164 |
name: Cosine Accuracy@10
|
165 |
- type: cosine_precision@1
|
166 |
-
value: 0.
|
167 |
name: Cosine Precision@1
|
168 |
- type: cosine_precision@3
|
169 |
-
value: 0.
|
170 |
name: Cosine Precision@3
|
171 |
- type: cosine_precision@5
|
172 |
-
value: 0.
|
173 |
name: Cosine Precision@5
|
174 |
- type: cosine_precision@10
|
175 |
-
value: 0.
|
176 |
name: Cosine Precision@10
|
177 |
- type: cosine_recall@1
|
178 |
-
value: 0.
|
179 |
name: Cosine Recall@1
|
180 |
- type: cosine_recall@3
|
181 |
-
value: 0.
|
182 |
name: Cosine Recall@3
|
183 |
- type: cosine_recall@5
|
184 |
-
value: 0.
|
185 |
name: Cosine Recall@5
|
186 |
- type: cosine_recall@10
|
187 |
-
value: 0.
|
188 |
name: Cosine Recall@10
|
189 |
- type: cosine_ndcg@10
|
190 |
-
value: 0.
|
191 |
name: Cosine Ndcg@10
|
192 |
- type: cosine_mrr@10
|
193 |
-
value: 0.
|
194 |
name: Cosine Mrr@10
|
195 |
- type: cosine_map@100
|
196 |
-
value: 0.
|
197 |
name: Cosine Map@100
|
198 |
- task:
|
199 |
type: information-retrieval
|
@@ -203,49 +216,49 @@ model-index:
|
|
203 |
type: dim_256
|
204 |
metrics:
|
205 |
- type: cosine_accuracy@1
|
206 |
-
value: 0.
|
207 |
name: Cosine Accuracy@1
|
208 |
- type: cosine_accuracy@3
|
209 |
-
value: 0.
|
210 |
name: Cosine Accuracy@3
|
211 |
- type: cosine_accuracy@5
|
212 |
-
value: 0.
|
213 |
name: Cosine Accuracy@5
|
214 |
- type: cosine_accuracy@10
|
215 |
-
value: 0.
|
216 |
name: Cosine Accuracy@10
|
217 |
- type: cosine_precision@1
|
218 |
-
value: 0.
|
219 |
name: Cosine Precision@1
|
220 |
- type: cosine_precision@3
|
221 |
-
value: 0.
|
222 |
name: Cosine Precision@3
|
223 |
- type: cosine_precision@5
|
224 |
-
value: 0.
|
225 |
name: Cosine Precision@5
|
226 |
- type: cosine_precision@10
|
227 |
-
value: 0.
|
228 |
name: Cosine Precision@10
|
229 |
- type: cosine_recall@1
|
230 |
-
value: 0.
|
231 |
name: Cosine Recall@1
|
232 |
- type: cosine_recall@3
|
233 |
-
value: 0.
|
234 |
name: Cosine Recall@3
|
235 |
- type: cosine_recall@5
|
236 |
-
value: 0.
|
237 |
name: Cosine Recall@5
|
238 |
- type: cosine_recall@10
|
239 |
-
value: 0.
|
240 |
name: Cosine Recall@10
|
241 |
- type: cosine_ndcg@10
|
242 |
-
value: 0.
|
243 |
name: Cosine Ndcg@10
|
244 |
- type: cosine_mrr@10
|
245 |
-
value: 0.
|
246 |
name: Cosine Mrr@10
|
247 |
- type: cosine_map@100
|
248 |
-
value: 0.
|
249 |
name: Cosine Map@100
|
250 |
- task:
|
251 |
type: information-retrieval
|
@@ -255,49 +268,49 @@ model-index:
|
|
255 |
type: dim_128
|
256 |
metrics:
|
257 |
- type: cosine_accuracy@1
|
258 |
-
value: 0.
|
259 |
name: Cosine Accuracy@1
|
260 |
- type: cosine_accuracy@3
|
261 |
-
value: 0.
|
262 |
name: Cosine Accuracy@3
|
263 |
- type: cosine_accuracy@5
|
264 |
-
value: 0.
|
265 |
name: Cosine Accuracy@5
|
266 |
- type: cosine_accuracy@10
|
267 |
-
value: 0.
|
268 |
name: Cosine Accuracy@10
|
269 |
- type: cosine_precision@1
|
270 |
-
value: 0.
|
271 |
name: Cosine Precision@1
|
272 |
- type: cosine_precision@3
|
273 |
-
value: 0.
|
274 |
name: Cosine Precision@3
|
275 |
- type: cosine_precision@5
|
276 |
-
value: 0.
|
277 |
name: Cosine Precision@5
|
278 |
- type: cosine_precision@10
|
279 |
-
value: 0.
|
280 |
name: Cosine Precision@10
|
281 |
- type: cosine_recall@1
|
282 |
-
value: 0.
|
283 |
name: Cosine Recall@1
|
284 |
- type: cosine_recall@3
|
285 |
-
value: 0.
|
286 |
name: Cosine Recall@3
|
287 |
- type: cosine_recall@5
|
288 |
-
value: 0.
|
289 |
name: Cosine Recall@5
|
290 |
- type: cosine_recall@10
|
291 |
-
value: 0.
|
292 |
name: Cosine Recall@10
|
293 |
- type: cosine_ndcg@10
|
294 |
-
value: 0.
|
295 |
name: Cosine Ndcg@10
|
296 |
- type: cosine_mrr@10
|
297 |
-
value: 0.
|
298 |
name: Cosine Mrr@10
|
299 |
- type: cosine_map@100
|
300 |
-
value: 0.
|
301 |
name: Cosine Map@100
|
302 |
- task:
|
303 |
type: information-retrieval
|
@@ -307,49 +320,49 @@ model-index:
|
|
307 |
type: dim_64
|
308 |
metrics:
|
309 |
- type: cosine_accuracy@1
|
310 |
-
value: 0.
|
311 |
name: Cosine Accuracy@1
|
312 |
- type: cosine_accuracy@3
|
313 |
-
value: 0.
|
314 |
name: Cosine Accuracy@3
|
315 |
- type: cosine_accuracy@5
|
316 |
-
value: 0.
|
317 |
name: Cosine Accuracy@5
|
318 |
- type: cosine_accuracy@10
|
319 |
-
value: 0.
|
320 |
name: Cosine Accuracy@10
|
321 |
- type: cosine_precision@1
|
322 |
-
value: 0.
|
323 |
name: Cosine Precision@1
|
324 |
- type: cosine_precision@3
|
325 |
-
value: 0.
|
326 |
name: Cosine Precision@3
|
327 |
- type: cosine_precision@5
|
328 |
-
value: 0.
|
329 |
name: Cosine Precision@5
|
330 |
- type: cosine_precision@10
|
331 |
-
value: 0.
|
332 |
name: Cosine Precision@10
|
333 |
- type: cosine_recall@1
|
334 |
-
value: 0.
|
335 |
name: Cosine Recall@1
|
336 |
- type: cosine_recall@3
|
337 |
-
value: 0.
|
338 |
name: Cosine Recall@3
|
339 |
- type: cosine_recall@5
|
340 |
-
value: 0.
|
341 |
name: Cosine Recall@5
|
342 |
- type: cosine_recall@10
|
343 |
-
value: 0.
|
344 |
name: Cosine Recall@10
|
345 |
- type: cosine_ndcg@10
|
346 |
-
value: 0.
|
347 |
name: Cosine Ndcg@10
|
348 |
- type: cosine_mrr@10
|
349 |
-
value: 0.
|
350 |
name: Cosine Mrr@10
|
351 |
- type: cosine_map@100
|
352 |
-
value: 0.
|
353 |
name: Cosine Map@100
|
354 |
---
|
355 |
|
@@ -404,9 +417,9 @@ from sentence_transformers import SentenceTransformer
|
|
404 |
model = SentenceTransformer("bnkc123/bge-base-financial-matryoshka")
|
405 |
# Run inference
|
406 |
sentences = [
|
407 |
-
|
408 |
-
'
|
409 |
-
'
|
410 |
]
|
411 |
embeddings = model.encode(sentences)
|
412 |
print(embeddings.shape)
|
@@ -458,21 +471,21 @@ You can finetune this model on your own dataset.
|
|
458 |
|
459 |
| Metric | Value |
|
460 |
|:--------------------|:-----------|
|
461 |
-
| cosine_accuracy@1 | 0.
|
462 |
-
| cosine_accuracy@3 | 0.
|
463 |
| cosine_accuracy@5 | 0.8686 |
|
464 |
-
| cosine_accuracy@10 | 0.
|
465 |
-
| cosine_precision@1 | 0.
|
466 |
-
| cosine_precision@3 | 0.
|
467 |
| cosine_precision@5 | 0.1737 |
|
468 |
-
| cosine_precision@10 | 0.
|
469 |
-
| cosine_recall@1 | 0.
|
470 |
-
| cosine_recall@3 | 0.
|
471 |
| cosine_recall@5 | 0.8686 |
|
472 |
-
| cosine_recall@10 | 0.
|
473 |
-
| **cosine_ndcg@10** | **0.
|
474 |
-
| cosine_mrr@10 | 0.
|
475 |
-
| cosine_map@100 | 0.
|
476 |
|
477 |
#### Information Retrieval
|
478 |
|
@@ -486,21 +499,21 @@ You can finetune this model on your own dataset.
|
|
486 |
|
487 |
| Metric | Value |
|
488 |
|:--------------------|:-----------|
|
489 |
-
| cosine_accuracy@1 | 0.
|
490 |
-
| cosine_accuracy@3 | 0.
|
491 |
-
| cosine_accuracy@5 | 0.
|
492 |
-
| cosine_accuracy@10 | 0.
|
493 |
-
| cosine_precision@1 | 0.
|
494 |
-
| cosine_precision@3 | 0.
|
495 |
-
| cosine_precision@5 | 0.
|
496 |
-
| cosine_precision@10 | 0.
|
497 |
-
| cosine_recall@1 | 0.
|
498 |
-
| cosine_recall@3 | 0.
|
499 |
-
| cosine_recall@5 | 0.
|
500 |
-
| cosine_recall@10 | 0.
|
501 |
-
| **cosine_ndcg@10** | **0.
|
502 |
-
| cosine_mrr@10 | 0.
|
503 |
-
| cosine_map@100 | 0.
|
504 |
|
505 |
#### Information Retrieval
|
506 |
|
@@ -514,21 +527,21 @@ You can finetune this model on your own dataset.
|
|
514 |
|
515 |
| Metric | Value |
|
516 |
|:--------------------|:-----------|
|
517 |
-
| cosine_accuracy@1 | 0.
|
518 |
-
| cosine_accuracy@3 | 0.
|
519 |
-
| cosine_accuracy@5 | 0.
|
520 |
-
| cosine_accuracy@10 | 0.
|
521 |
-
| cosine_precision@1 | 0.
|
522 |
-
| cosine_precision@3 | 0.
|
523 |
-
| cosine_precision@5 | 0.
|
524 |
-
| cosine_precision@10 | 0.
|
525 |
-
| cosine_recall@1 | 0.
|
526 |
-
| cosine_recall@3 | 0.
|
527 |
-
| cosine_recall@5 | 0.
|
528 |
-
| cosine_recall@10 | 0.
|
529 |
-
| **cosine_ndcg@10** | **0.
|
530 |
-
| cosine_mrr@10 | 0.
|
531 |
-
| cosine_map@100 | 0.
|
532 |
|
533 |
#### Information Retrieval
|
534 |
|
@@ -542,21 +555,21 @@ You can finetune this model on your own dataset.
|
|
542 |
|
543 |
| Metric | Value |
|
544 |
|:--------------------|:-----------|
|
545 |
-
| cosine_accuracy@1 | 0.
|
546 |
-
| cosine_accuracy@3 | 0.
|
547 |
-
| cosine_accuracy@5 | 0.
|
548 |
-
| cosine_accuracy@10 | 0.
|
549 |
-
| cosine_precision@1 | 0.
|
550 |
-
| cosine_precision@3 | 0.
|
551 |
-
| cosine_precision@5 | 0.
|
552 |
-
| cosine_precision@10 | 0.
|
553 |
-
| cosine_recall@1 | 0.
|
554 |
-
| cosine_recall@3 | 0.
|
555 |
-
| cosine_recall@5 | 0.
|
556 |
-
| cosine_recall@10 | 0.
|
557 |
-
| **cosine_ndcg@10** | **0.
|
558 |
-
| cosine_mrr@10 | 0.
|
559 |
-
| cosine_map@100 | 0.
|
560 |
|
561 |
#### Information Retrieval
|
562 |
|
@@ -570,21 +583,21 @@ You can finetune this model on your own dataset.
|
|
570 |
|
571 |
| Metric | Value |
|
572 |
|:--------------------|:-----------|
|
573 |
-
| cosine_accuracy@1 | 0.
|
574 |
-
| cosine_accuracy@3 | 0.
|
575 |
-
| cosine_accuracy@5 | 0.
|
576 |
-
| cosine_accuracy@10 | 0.
|
577 |
-
| cosine_precision@1 | 0.
|
578 |
-
| cosine_precision@3 | 0.
|
579 |
-
| cosine_precision@5 | 0.
|
580 |
-
| cosine_precision@10 | 0.
|
581 |
-
| cosine_recall@1 | 0.
|
582 |
-
| cosine_recall@3 | 0.
|
583 |
-
| cosine_recall@5 | 0.
|
584 |
-
| cosine_recall@10 | 0.
|
585 |
-
| **cosine_ndcg@10** | **0.
|
586 |
-
| cosine_mrr@10 | 0.
|
587 |
-
| cosine_map@100 | 0.
|
588 |
|
589 |
<!--
|
590 |
## Bias, Risks and Limitations
|
@@ -608,16 +621,16 @@ You can finetune this model on your own dataset.
|
|
608 |
* Size: 6,300 training samples
|
609 |
* Columns: <code>anchor</code> and <code>positive</code>
|
610 |
* Approximate statistics based on the first 1000 samples:
|
611 |
-
| | anchor
|
612 |
-
|
613 |
-
| type | string
|
614 |
-
| details | <ul><li>min:
|
615 |
* Samples:
|
616 |
-
| anchor
|
617 |
-
|
618 |
-
| <code>
|
619 |
-
| <code>What
|
620 |
-
| <code>What
|
621 |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
|
622 |
```json
|
623 |
{
|
@@ -782,14 +795,14 @@ You can finetune this model on your own dataset.
|
|
782 |
### Training Logs
|
783 |
| Epoch | Step | Training Loss | dim_768_cosine_ndcg@10 | dim_512_cosine_ndcg@10 | dim_256_cosine_ndcg@10 | dim_128_cosine_ndcg@10 | dim_64_cosine_ndcg@10 |
|
784 |
|:---------:|:------:|:-------------:|:----------------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|
|
785 |
-
| 0.8122 | 10 | 25.
|
786 |
-
| 1.0 | 13 | - | 0.
|
787 |
-
| 1.5685 | 20 | 9.
|
788 |
-
| 2.0 | 26 | - | 0.
|
789 |
-
| 2.3249 | 30 |
|
790 |
-
| 3.0 | 39 | - | 0.
|
791 |
-
| 3.0812 | 40 | 6.
|
792 |
-
| **3.731** | **48** | **-** | **0.
|
793 |
|
794 |
* The bold row denotes the saved checkpoint.
|
795 |
|
|
|
12 |
- loss:MultipleNegativesRankingLoss
|
13 |
base_model: BAAI/bge-base-en-v1.5
|
14 |
widget:
|
15 |
+
- source_sentence: What are the components of Comcast's domestic distribution revenue?
|
|
|
16 |
sentences:
|
17 |
+
- Cash used in investing activities was $2.3 billion for fiscal 2023, compared to
|
18 |
+
$2.1 billion for fiscal 2022.
|
19 |
+
- Domestic distribution revenue primarily includes revenue generated from the distribution
|
20 |
+
of our television networks operating predominantly in the United States to traditional
|
21 |
+
and virtual multichannel video providers, and from NBC-affiliated and Telemundo-affiliated
|
22 |
+
local broadcast television stations. Our revenue from distribution agreements
|
23 |
+
is generally based on the number of subscribers receiving the programming on our
|
24 |
+
television networks and a per subscriber fee. Distribution revenue also includes
|
25 |
+
Peacock subscription fees.
|
26 |
+
- In January 2023, Alphabet Inc. announced a reduction of its workforce, consequently
|
27 |
+
recording employee severance and related charges of $2.1 billion for the year.
|
28 |
+
- source_sentence: What was the noncash pre-tax impairment charge recorded due to
|
29 |
+
the disposal of Vrio's operations in 2021, and what are the main components contributing
|
30 |
+
to this amount?
|
31 |
sentences:
|
32 |
+
- The cash equities rate per contract (per 100 shares) for NYSE increased by 6%,
|
33 |
+
from $0.045 in 2022 to $0.048 in 2023.
|
34 |
+
- In the second quarter of 2021, we classified the Vrio disposal group as held-for-sale
|
35 |
+
and reported the disposal group at fair value less cost to sell, which resulted
|
36 |
+
in a noncash, pre-tax impairment charge of $4,555, including approximately $2,100
|
37 |
+
related to accumulated foreign currency translation adjustments and $2,500 related
|
38 |
+
to property, plant and equipment and intangible assets.
|
39 |
+
- 'SECRET LAIR - our internet-based storefront where MAGIC: THE GATHERING fans can
|
40 |
+
purchase exclusive and limited versions of cards.'
|
41 |
+
- source_sentence: What does the Corporate and Other segment include in its composition?
|
42 |
sentences:
|
43 |
+
- The segment consists of unallocated corporate expenses and administrative costs
|
44 |
+
and activities not considered when evaluating segment performance as well as certain
|
45 |
+
assets benefiting more than one segment. In addition, intersegment transactions
|
46 |
+
are eliminated within the Corporate and Other segment.
|
47 |
+
- Net cash provided by (used in) operating activities was recorded at $20,930 million
|
48 |
+
for the reported year.
|
49 |
+
- Forward-Looking Statements Certain statements in this report, other than purely
|
50 |
+
historical information, including estimates, projections, statements relating
|
51 |
+
to our business plans, objectives and expected operating results, and the assumptions
|
52 |
+
upon which those statements are based, are “forward-looking statements” within
|
53 |
+
the meaning of the Private Securities Litigation Reform Act of 1995, Section 27A
|
54 |
+
of the Securities Act of 1933 and Section 21E of the Securities Exchange Act of
|
55 |
+
1934.
|
56 |
+
- source_sentence: What was the purchase price for the repurchase of Mobility preferred
|
57 |
+
interests by AT&T in 2023?
|
58 |
sentences:
|
59 |
+
- Net revenue increased $1.5 billion, or 19%, to $9.6 billion in 2023 from $8.1
|
60 |
+
billion in 2022. On a constant dollar basis, net revenue increased 20%. Comparable
|
61 |
+
sales increased 13%, or 14% on a constant dollar basis. The increase in net revenue
|
62 |
+
was primarily due to increased Americas net revenue. China Mainland and Rest of
|
63 |
+
World net revenue also increased.
|
64 |
+
- Google Services includes products and services such as ads, Android, Chrome, devices,
|
65 |
+
Google Maps, Google Play, Search, and YouTube. Google Services generates revenues
|
66 |
+
primarily from advertising; fees received for consumer subscription-based products
|
67 |
+
such. as YouTube TV, YouTube Music and Premium, and NFL Sunday Ticket; and the
|
68 |
+
sale of apps and in-app purchases and devices.
|
69 |
+
- In April 2023, we also accepted the December 2022 put option notice from the AT&T
|
70 |
+
pension trust and repurchased the remaining 213 million Mobility preferred interests
|
71 |
+
for a purchase price, including accrued and unpaid distributions, of $5,414.
|
72 |
+
- source_sentence: What is the maximum leverage ratio allowed before default under
|
73 |
+
the company's credit facility?
|
74 |
sentences:
|
75 |
+
- If the company's leverage ratio exceeds 3.50 to 1, it would be in default of its
|
76 |
+
revolving credit facility, impairing its ability to borrow under the facility.
|
77 |
+
- Research and Development Because the industries in which the Company competes
|
78 |
+
are characterized by rapid technological advances, the Company’s ability to compete
|
79 |
+
successfully depends heavily upon its ability to ensure a continual and timely
|
80 |
+
flow of competitive products, services and technologies to the marketplace.
|
81 |
+
- Visa is focused on extending, enhancing and investing in VisaNet, their proprietary
|
82 |
+
advanced transaction processing network, to offer a single connection point for
|
83 |
+
facilitating payment transactions to multiple endpoints through various form factors.
|
|
|
|
|
|
|
84 |
datasets:
|
85 |
- philschmid/finanical-rag-embedding-dataset
|
86 |
pipeline_tag: sentence-similarity
|
|
|
112 |
type: dim_768
|
113 |
metrics:
|
114 |
- type: cosine_accuracy@1
|
115 |
+
value: 0.6771428571428572
|
116 |
name: Cosine Accuracy@1
|
117 |
- type: cosine_accuracy@3
|
118 |
+
value: 0.8371428571428572
|
119 |
name: Cosine Accuracy@3
|
120 |
- type: cosine_accuracy@5
|
121 |
value: 0.8685714285714285
|
122 |
name: Cosine Accuracy@5
|
123 |
- type: cosine_accuracy@10
|
124 |
+
value: 0.9185714285714286
|
125 |
name: Cosine Accuracy@10
|
126 |
- type: cosine_precision@1
|
127 |
+
value: 0.6771428571428572
|
128 |
name: Cosine Precision@1
|
129 |
- type: cosine_precision@3
|
130 |
+
value: 0.27904761904761904
|
131 |
name: Cosine Precision@3
|
132 |
- type: cosine_precision@5
|
133 |
+
value: 0.17371428571428568
|
134 |
name: Cosine Precision@5
|
135 |
- type: cosine_precision@10
|
136 |
+
value: 0.09185714285714283
|
137 |
name: Cosine Precision@10
|
138 |
- type: cosine_recall@1
|
139 |
+
value: 0.6771428571428572
|
140 |
name: Cosine Recall@1
|
141 |
- type: cosine_recall@3
|
142 |
+
value: 0.8371428571428572
|
143 |
name: Cosine Recall@3
|
144 |
- type: cosine_recall@5
|
145 |
value: 0.8685714285714285
|
146 |
name: Cosine Recall@5
|
147 |
- type: cosine_recall@10
|
148 |
+
value: 0.9185714285714286
|
149 |
name: Cosine Recall@10
|
150 |
- type: cosine_ndcg@10
|
151 |
+
value: 0.800782444183487
|
152 |
name: Cosine Ndcg@10
|
153 |
- type: cosine_mrr@10
|
154 |
+
value: 0.762721088435374
|
155 |
name: Cosine Mrr@10
|
156 |
- type: cosine_map@100
|
157 |
+
value: 0.7655884035994069
|
158 |
name: Cosine Map@100
|
159 |
- task:
|
160 |
type: information-retrieval
|
|
|
164 |
type: dim_512
|
165 |
metrics:
|
166 |
- type: cosine_accuracy@1
|
167 |
+
value: 0.6828571428571428
|
168 |
name: Cosine Accuracy@1
|
169 |
- type: cosine_accuracy@3
|
170 |
+
value: 0.8371428571428572
|
171 |
name: Cosine Accuracy@3
|
172 |
- type: cosine_accuracy@5
|
173 |
+
value: 0.8757142857142857
|
174 |
name: Cosine Accuracy@5
|
175 |
- type: cosine_accuracy@10
|
176 |
+
value: 0.92
|
177 |
name: Cosine Accuracy@10
|
178 |
- type: cosine_precision@1
|
179 |
+
value: 0.6828571428571428
|
180 |
name: Cosine Precision@1
|
181 |
- type: cosine_precision@3
|
182 |
+
value: 0.27904761904761904
|
183 |
name: Cosine Precision@3
|
184 |
- type: cosine_precision@5
|
185 |
+
value: 0.17514285714285713
|
186 |
name: Cosine Precision@5
|
187 |
- type: cosine_precision@10
|
188 |
+
value: 0.09199999999999998
|
189 |
name: Cosine Precision@10
|
190 |
- type: cosine_recall@1
|
191 |
+
value: 0.6828571428571428
|
192 |
name: Cosine Recall@1
|
193 |
- type: cosine_recall@3
|
194 |
+
value: 0.8371428571428572
|
195 |
name: Cosine Recall@3
|
196 |
- type: cosine_recall@5
|
197 |
+
value: 0.8757142857142857
|
198 |
name: Cosine Recall@5
|
199 |
- type: cosine_recall@10
|
200 |
+
value: 0.92
|
201 |
name: Cosine Recall@10
|
202 |
- type: cosine_ndcg@10
|
203 |
+
value: 0.80444342170685
|
204 |
name: Cosine Ndcg@10
|
205 |
- type: cosine_mrr@10
|
206 |
+
value: 0.7670583900226756
|
207 |
name: Cosine Mrr@10
|
208 |
- type: cosine_map@100
|
209 |
+
value: 0.7699510134898729
|
210 |
name: Cosine Map@100
|
211 |
- task:
|
212 |
type: information-retrieval
|
|
|
216 |
type: dim_256
|
217 |
metrics:
|
218 |
- type: cosine_accuracy@1
|
219 |
+
value: 0.6757142857142857
|
220 |
name: Cosine Accuracy@1
|
221 |
- type: cosine_accuracy@3
|
222 |
+
value: 0.8228571428571428
|
223 |
name: Cosine Accuracy@3
|
224 |
- type: cosine_accuracy@5
|
225 |
+
value: 0.8642857142857143
|
226 |
name: Cosine Accuracy@5
|
227 |
- type: cosine_accuracy@10
|
228 |
+
value: 0.9185714285714286
|
229 |
name: Cosine Accuracy@10
|
230 |
- type: cosine_precision@1
|
231 |
+
value: 0.6757142857142857
|
232 |
name: Cosine Precision@1
|
233 |
- type: cosine_precision@3
|
234 |
+
value: 0.2742857142857143
|
235 |
name: Cosine Precision@3
|
236 |
- type: cosine_precision@5
|
237 |
+
value: 0.17285714285714285
|
238 |
name: Cosine Precision@5
|
239 |
- type: cosine_precision@10
|
240 |
+
value: 0.09185714285714283
|
241 |
name: Cosine Precision@10
|
242 |
- type: cosine_recall@1
|
243 |
+
value: 0.6757142857142857
|
244 |
name: Cosine Recall@1
|
245 |
- type: cosine_recall@3
|
246 |
+
value: 0.8228571428571428
|
247 |
name: Cosine Recall@3
|
248 |
- type: cosine_recall@5
|
249 |
+
value: 0.8642857142857143
|
250 |
name: Cosine Recall@5
|
251 |
- type: cosine_recall@10
|
252 |
+
value: 0.9185714285714286
|
253 |
name: Cosine Recall@10
|
254 |
- type: cosine_ndcg@10
|
255 |
+
value: 0.7984105242762846
|
256 |
name: Cosine Ndcg@10
|
257 |
- type: cosine_mrr@10
|
258 |
+
value: 0.7599024943310656
|
259 |
name: Cosine Mrr@10
|
260 |
- type: cosine_map@100
|
261 |
+
value: 0.7625291382895937
|
262 |
name: Cosine Map@100
|
263 |
- task:
|
264 |
type: information-retrieval
|
|
|
268 |
type: dim_128
|
269 |
metrics:
|
270 |
- type: cosine_accuracy@1
|
271 |
+
value: 0.6714285714285714
|
272 |
name: Cosine Accuracy@1
|
273 |
- type: cosine_accuracy@3
|
274 |
+
value: 0.8114285714285714
|
275 |
name: Cosine Accuracy@3
|
276 |
- type: cosine_accuracy@5
|
277 |
+
value: 0.8485714285714285
|
278 |
name: Cosine Accuracy@5
|
279 |
- type: cosine_accuracy@10
|
280 |
+
value: 0.9014285714285715
|
281 |
name: Cosine Accuracy@10
|
282 |
- type: cosine_precision@1
|
283 |
+
value: 0.6714285714285714
|
284 |
name: Cosine Precision@1
|
285 |
- type: cosine_precision@3
|
286 |
+
value: 0.2704761904761904
|
287 |
name: Cosine Precision@3
|
288 |
- type: cosine_precision@5
|
289 |
+
value: 0.16971428571428568
|
290 |
name: Cosine Precision@5
|
291 |
- type: cosine_precision@10
|
292 |
+
value: 0.09014285714285714
|
293 |
name: Cosine Precision@10
|
294 |
- type: cosine_recall@1
|
295 |
+
value: 0.6714285714285714
|
296 |
name: Cosine Recall@1
|
297 |
- type: cosine_recall@3
|
298 |
+
value: 0.8114285714285714
|
299 |
name: Cosine Recall@3
|
300 |
- type: cosine_recall@5
|
301 |
+
value: 0.8485714285714285
|
302 |
name: Cosine Recall@5
|
303 |
- type: cosine_recall@10
|
304 |
+
value: 0.9014285714285715
|
305 |
name: Cosine Recall@10
|
306 |
- type: cosine_ndcg@10
|
307 |
+
value: 0.7872870842648211
|
308 |
name: Cosine Ndcg@10
|
309 |
- type: cosine_mrr@10
|
310 |
+
value: 0.7507193877551018
|
311 |
name: Cosine Mrr@10
|
312 |
- type: cosine_map@100
|
313 |
+
value: 0.7542921487122674
|
314 |
name: Cosine Map@100
|
315 |
- task:
|
316 |
type: information-retrieval
|
|
|
320 |
type: dim_64
|
321 |
metrics:
|
322 |
- type: cosine_accuracy@1
|
323 |
+
value: 0.6242857142857143
|
324 |
name: Cosine Accuracy@1
|
325 |
- type: cosine_accuracy@3
|
326 |
+
value: 0.7842857142857143
|
327 |
name: Cosine Accuracy@3
|
328 |
- type: cosine_accuracy@5
|
329 |
+
value: 0.82
|
330 |
name: Cosine Accuracy@5
|
331 |
- type: cosine_accuracy@10
|
332 |
+
value: 0.8828571428571429
|
333 |
name: Cosine Accuracy@10
|
334 |
- type: cosine_precision@1
|
335 |
+
value: 0.6242857142857143
|
336 |
name: Cosine Precision@1
|
337 |
- type: cosine_precision@3
|
338 |
+
value: 0.26142857142857145
|
339 |
name: Cosine Precision@3
|
340 |
- type: cosine_precision@5
|
341 |
+
value: 0.16399999999999998
|
342 |
name: Cosine Precision@5
|
343 |
- type: cosine_precision@10
|
344 |
+
value: 0.08828571428571429
|
345 |
name: Cosine Precision@10
|
346 |
- type: cosine_recall@1
|
347 |
+
value: 0.6242857142857143
|
348 |
name: Cosine Recall@1
|
349 |
- type: cosine_recall@3
|
350 |
+
value: 0.7842857142857143
|
351 |
name: Cosine Recall@3
|
352 |
- type: cosine_recall@5
|
353 |
+
value: 0.82
|
354 |
name: Cosine Recall@5
|
355 |
- type: cosine_recall@10
|
356 |
+
value: 0.8828571428571429
|
357 |
name: Cosine Recall@10
|
358 |
- type: cosine_ndcg@10
|
359 |
+
value: 0.7546358861091382
|
360 |
name: Cosine Ndcg@10
|
361 |
- type: cosine_mrr@10
|
362 |
+
value: 0.7135277777777775
|
363 |
name: Cosine Mrr@10
|
364 |
- type: cosine_map@100
|
365 |
+
value: 0.7174129354945035
|
366 |
name: Cosine Map@100
|
367 |
---
|
368 |
|
|
|
417 |
model = SentenceTransformer("bnkc123/bge-base-financial-matryoshka")
|
418 |
# Run inference
|
419 |
sentences = [
|
420 |
+
"What is the maximum leverage ratio allowed before default under the company's credit facility?",
|
421 |
+
"If the company's leverage ratio exceeds 3.50 to 1, it would be in default of its revolving credit facility, impairing its ability to borrow under the facility.",
|
422 |
+
'Research and Development Because the industries in which the Company competes are characterized by rapid technological advances, the Company’s ability to compete successfully depends heavily upon its ability to ensure a continual and timely flow of competitive products, services and technologies to the marketplace.',
|
423 |
]
|
424 |
embeddings = model.encode(sentences)
|
425 |
print(embeddings.shape)
|
|
|
471 |
|
472 |
| Metric | Value |
|
473 |
|:--------------------|:-----------|
|
474 |
+
| cosine_accuracy@1 | 0.6771 |
|
475 |
+
| cosine_accuracy@3 | 0.8371 |
|
476 |
| cosine_accuracy@5 | 0.8686 |
|
477 |
+
| cosine_accuracy@10 | 0.9186 |
|
478 |
+
| cosine_precision@1 | 0.6771 |
|
479 |
+
| cosine_precision@3 | 0.279 |
|
480 |
| cosine_precision@5 | 0.1737 |
|
481 |
+
| cosine_precision@10 | 0.0919 |
|
482 |
+
| cosine_recall@1 | 0.6771 |
|
483 |
+
| cosine_recall@3 | 0.8371 |
|
484 |
| cosine_recall@5 | 0.8686 |
|
485 |
+
| cosine_recall@10 | 0.9186 |
|
486 |
+
| **cosine_ndcg@10** | **0.8008** |
|
487 |
+
| cosine_mrr@10 | 0.7627 |
|
488 |
+
| cosine_map@100 | 0.7656 |
|
489 |
|
490 |
#### Information Retrieval
|
491 |
|
|
|
499 |
|
500 |
| Metric | Value |
|
501 |
|:--------------------|:-----------|
|
502 |
+
| cosine_accuracy@1 | 0.6829 |
|
503 |
+
| cosine_accuracy@3 | 0.8371 |
|
504 |
+
| cosine_accuracy@5 | 0.8757 |
|
505 |
+
| cosine_accuracy@10 | 0.92 |
|
506 |
+
| cosine_precision@1 | 0.6829 |
|
507 |
+
| cosine_precision@3 | 0.279 |
|
508 |
+
| cosine_precision@5 | 0.1751 |
|
509 |
+
| cosine_precision@10 | 0.092 |
|
510 |
+
| cosine_recall@1 | 0.6829 |
|
511 |
+
| cosine_recall@3 | 0.8371 |
|
512 |
+
| cosine_recall@5 | 0.8757 |
|
513 |
+
| cosine_recall@10 | 0.92 |
|
514 |
+
| **cosine_ndcg@10** | **0.8044** |
|
515 |
+
| cosine_mrr@10 | 0.7671 |
|
516 |
+
| cosine_map@100 | 0.77 |
|
517 |
|
518 |
#### Information Retrieval
|
519 |
|
|
|
527 |
|
528 |
| Metric | Value |
|
529 |
|:--------------------|:-----------|
|
530 |
+
| cosine_accuracy@1 | 0.6757 |
|
531 |
+
| cosine_accuracy@3 | 0.8229 |
|
532 |
+
| cosine_accuracy@5 | 0.8643 |
|
533 |
+
| cosine_accuracy@10 | 0.9186 |
|
534 |
+
| cosine_precision@1 | 0.6757 |
|
535 |
+
| cosine_precision@3 | 0.2743 |
|
536 |
+
| cosine_precision@5 | 0.1729 |
|
537 |
+
| cosine_precision@10 | 0.0919 |
|
538 |
+
| cosine_recall@1 | 0.6757 |
|
539 |
+
| cosine_recall@3 | 0.8229 |
|
540 |
+
| cosine_recall@5 | 0.8643 |
|
541 |
+
| cosine_recall@10 | 0.9186 |
|
542 |
+
| **cosine_ndcg@10** | **0.7984** |
|
543 |
+
| cosine_mrr@10 | 0.7599 |
|
544 |
+
| cosine_map@100 | 0.7625 |
|
545 |
|
546 |
#### Information Retrieval
|
547 |
|
|
|
555 |
|
556 |
| Metric | Value |
|
557 |
|:--------------------|:-----------|
|
558 |
+
| cosine_accuracy@1 | 0.6714 |
|
559 |
+
| cosine_accuracy@3 | 0.8114 |
|
560 |
+
| cosine_accuracy@5 | 0.8486 |
|
561 |
+
| cosine_accuracy@10 | 0.9014 |
|
562 |
+
| cosine_precision@1 | 0.6714 |
|
563 |
+
| cosine_precision@3 | 0.2705 |
|
564 |
+
| cosine_precision@5 | 0.1697 |
|
565 |
+
| cosine_precision@10 | 0.0901 |
|
566 |
+
| cosine_recall@1 | 0.6714 |
|
567 |
+
| cosine_recall@3 | 0.8114 |
|
568 |
+
| cosine_recall@5 | 0.8486 |
|
569 |
+
| cosine_recall@10 | 0.9014 |
|
570 |
+
| **cosine_ndcg@10** | **0.7873** |
|
571 |
+
| cosine_mrr@10 | 0.7507 |
|
572 |
+
| cosine_map@100 | 0.7543 |
|
573 |
|
574 |
#### Information Retrieval
|
575 |
|
|
|
583 |
|
584 |
| Metric | Value |
|
585 |
|:--------------------|:-----------|
|
586 |
+
| cosine_accuracy@1 | 0.6243 |
|
587 |
+
| cosine_accuracy@3 | 0.7843 |
|
588 |
+
| cosine_accuracy@5 | 0.82 |
|
589 |
+
| cosine_accuracy@10 | 0.8829 |
|
590 |
+
| cosine_precision@1 | 0.6243 |
|
591 |
+
| cosine_precision@3 | 0.2614 |
|
592 |
+
| cosine_precision@5 | 0.164 |
|
593 |
+
| cosine_precision@10 | 0.0883 |
|
594 |
+
| cosine_recall@1 | 0.6243 |
|
595 |
+
| cosine_recall@3 | 0.7843 |
|
596 |
+
| cosine_recall@5 | 0.82 |
|
597 |
+
| cosine_recall@10 | 0.8829 |
|
598 |
+
| **cosine_ndcg@10** | **0.7546** |
|
599 |
+
| cosine_mrr@10 | 0.7135 |
|
600 |
+
| cosine_map@100 | 0.7174 |
|
601 |
|
602 |
<!--
|
603 |
## Bias, Risks and Limitations
|
|
|
621 |
* Size: 6,300 training samples
|
622 |
* Columns: <code>anchor</code> and <code>positive</code>
|
623 |
* Approximate statistics based on the first 1000 samples:
|
624 |
+
| | anchor | positive |
|
625 |
+
|:--------|:---------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
|
626 |
+
| type | string | string |
|
627 |
+
| details | <ul><li>min: 7 tokens</li><li>mean: 20.5 tokens</li><li>max: 43 tokens</li></ul> | <ul><li>min: 9 tokens</li><li>mean: 46.09 tokens</li><li>max: 512 tokens</li></ul> |
|
628 |
* Samples:
|
629 |
+
| anchor | positive |
|
630 |
+
|:----------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
631 |
+
| <code>What was the amount of premiums written by Berkshire Hathaway's Insurance Underwriting in 2023, and how did it compare to the previous year?</code> | <code>Premiums written increased $3.5 billion (24.1%) in 2023 compared to 2022. The increase was primarily due to RSUI and CapSpecialty ($2.1 billion), as well as comparative increases from BHSI and BH Direct, and to a lesser extent the other businesses. Premiums written | $ | 18,142 | | | | $ | 14,619 |</code> |
|
632 |
+
| <code>What types of transportation equipment does XTRA Corporation manage in its fleet?</code> | <code>XTRA manages a diverse fleet of approximately 90,000 units located at 47 facilities throughout the U.S. The fleet includes over-the-road and storage trailers, chassis, temperature-controlled vans and flatbed trailers.</code> |
|
633 |
+
| <code>What seasonal trends affect the company's sales volumes?</code> | <code>Sales volumes for the company are highest in the second fiscal quarter due to seasonal influences, particularly during the spring season in the regions it serves.</code> |
|
634 |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
|
635 |
```json
|
636 |
{
|
|
|
795 |
### Training Logs
|
796 |
| Epoch | Step | Training Loss | dim_768_cosine_ndcg@10 | dim_512_cosine_ndcg@10 | dim_256_cosine_ndcg@10 | dim_128_cosine_ndcg@10 | dim_64_cosine_ndcg@10 |
|
797 |
|:---------:|:------:|:-------------:|:----------------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|
|
798 |
+
| 0.8122 | 10 | 25.483 | - | - | - | - | - |
|
799 |
+
| 1.0 | 13 | - | 0.7890 | 0.7887 | 0.7815 | 0.7647 | 0.7280 |
|
800 |
+
| 1.5685 | 20 | 9.1323 | - | - | - | - | - |
|
801 |
+
| 2.0 | 26 | - | 0.7952 | 0.7982 | 0.7933 | 0.7801 | 0.7477 |
|
802 |
+
| 2.3249 | 30 | 6.7535 | - | - | - | - | - |
|
803 |
+
| 3.0 | 39 | - | 0.8019 | 0.8048 | 0.7989 | 0.7865 | 0.7547 |
|
804 |
+
| 3.0812 | 40 | 6.5646 | - | - | - | - | - |
|
805 |
+
| **3.731** | **48** | **-** | **0.8008** | **0.8044** | **0.7984** | **0.7873** | **0.7546** |
|
806 |
|
807 |
* The bold row denotes the saved checkpoint.
|
808 |
|