bnkc123 commited on
Commit
d0b4a80
·
verified ·
1 Parent(s): cd504fb

Model save

Browse files
Files changed (1) hide show
  1. README.md +229 -216
README.md CHANGED
@@ -12,62 +12,75 @@ tags:
12
  - loss:MultipleNegativesRankingLoss
13
  base_model: BAAI/bge-base-en-v1.5
14
  widget:
15
- - source_sentence: How many hours of training and development did Bank of America
16
- provide to its employees in 2023?
17
  sentences:
18
- - In recent years, several jurisdictions have enhanced their laws and regulations
19
- in this area, increased their enforcement activities, and/or increased the level
20
- of cross-border coordination and information sharing.
21
- - In 2023, Bank of America delivered approximately 6.7 million hours of training
22
- and development to its teammates through Bank of America Academy.
23
- - Chevron affiliates manage a total of 338 thousand net acres, as detailed in the
24
- table for acreage distribution as of December 31, 2023.
25
- - source_sentence: What are the projected trends for Comcast's residential connectivity
26
- revenue in 2023?
 
 
 
 
 
27
  sentences:
28
- - In 2023, Switzerland’s Federal Council passed legislation which would implement
29
- a federal minimum tax in Switzerland of 15% in 2024.
30
- - We believe our residential connectivity revenue will increase as a result of growth
31
- in average domestic broadband revenue per customer, as well as increases in domestic
32
- wireless and international connectivity revenue.
33
- - Approximately 97% of our debt securities were investment-grade quality, with a
34
- weighted average credit rating of AA- at the end of 2023.
35
- - source_sentence: What type of merchandise is included under seasonal and electronics
36
- merchandise?
 
37
  sentences:
38
- - Seasonal and electronics merchandise at the company includes items related to
39
- Christmas, Easter, Halloween, and Valentine's Day, along with personal electronics
40
- like pre-paid cellular phones and services.
41
- - Hewlett Packard Enterprise, with over half of their revenue generated overseas,
42
- experiences impact from fluctuations in foreign currency exchange rates. These
43
- fluctuations have increased product costs and moderated revenue and earnings growth,
44
- particularly in recent periods.
45
- - Net investment income grew from $597 million in 2021 to $895 million in 2023,
46
- which is a 43.0% increase.
47
- - source_sentence: What are the types of dialysis available for ESKD patients and
48
- how often is hemodialysis typically performed?
 
 
 
 
49
  sentences:
50
- - Note 16 is important in a Form 10-K for providing detailed information on legal
51
- proceedings as 'Commitments and Contingencies.'
52
- - Amazon believes that the principal competitive factors in its retail businesses
53
- include selection, price, and convenience, including fast and reliable fulfillment.
54
- - Dialysis options for ESKD patients include hemodialysis, which is usually performed
55
- three times per week, and peritoneal dialysis.
56
- - source_sentence: How much total cash did The Hershey Company use for share repurchases
57
- in 2023 excluding excise tax?
 
 
 
 
 
 
 
58
  sentences:
59
- - In 2023, The Hershey Company used a total of $267.3 million in cash for share
60
- repurchases, excluding any excise tax.
61
- - Operating income increased $5.8 billion, or 72.8%, in 2023 compared to 2022. The
62
- increase in operating income was primarily driven by the absence of $5.8 billion
63
- of opioid litigation charges recorded in 2022 and increases in the Pharmacy &
64
- Consumer Wellness segment, primarily driven by the absence of a $2.5 billion loss
65
- on assets held for sale recorded in 2022 related to the write-down of the Company’s
66
- Omnicare® long-term care business which was partially offset by continued pharmacy
67
- reimbursement pressure and decreased COVID-19 vaccinations and diagnostic testing
68
- compared to 2022, as well as an increase in the Health Services segment.
69
- - Net income for the year ended December 31, 2023, was $307,568, contrasting with
70
- a net loss of $694,288 in 2022.
71
  datasets:
72
  - philschmid/finanical-rag-embedding-dataset
73
  pipeline_tag: sentence-similarity
@@ -99,49 +112,49 @@ model-index:
99
  type: dim_768
100
  metrics:
101
  - type: cosine_accuracy@1
102
- value: 0.6914285714285714
103
  name: Cosine Accuracy@1
104
  - type: cosine_accuracy@3
105
- value: 0.8257142857142857
106
  name: Cosine Accuracy@3
107
  - type: cosine_accuracy@5
108
  value: 0.8685714285714285
109
  name: Cosine Accuracy@5
110
  - type: cosine_accuracy@10
111
- value: 0.9228571428571428
112
  name: Cosine Accuracy@10
113
  - type: cosine_precision@1
114
- value: 0.6914285714285714
115
  name: Cosine Precision@1
116
  - type: cosine_precision@3
117
- value: 0.2752380952380952
118
  name: Cosine Precision@3
119
  - type: cosine_precision@5
120
- value: 0.1737142857142857
121
  name: Cosine Precision@5
122
  - type: cosine_precision@10
123
- value: 0.09228571428571428
124
  name: Cosine Precision@10
125
  - type: cosine_recall@1
126
- value: 0.6914285714285714
127
  name: Cosine Recall@1
128
  - type: cosine_recall@3
129
- value: 0.8257142857142857
130
  name: Cosine Recall@3
131
  - type: cosine_recall@5
132
  value: 0.8685714285714285
133
  name: Cosine Recall@5
134
  - type: cosine_recall@10
135
- value: 0.9228571428571428
136
  name: Cosine Recall@10
137
  - type: cosine_ndcg@10
138
- value: 0.8071406101424283
139
  name: Cosine Ndcg@10
140
  - type: cosine_mrr@10
141
- value: 0.770200113378685
142
  name: Cosine Mrr@10
143
  - type: cosine_map@100
144
- value: 0.7731689567146356
145
  name: Cosine Map@100
146
  - task:
147
  type: information-retrieval
@@ -151,49 +164,49 @@ model-index:
151
  type: dim_512
152
  metrics:
153
  - type: cosine_accuracy@1
154
- value: 0.6985714285714286
155
  name: Cosine Accuracy@1
156
  - type: cosine_accuracy@3
157
- value: 0.8314285714285714
158
  name: Cosine Accuracy@3
159
  - type: cosine_accuracy@5
160
- value: 0.8685714285714285
161
  name: Cosine Accuracy@5
162
  - type: cosine_accuracy@10
163
- value: 0.9142857142857143
164
  name: Cosine Accuracy@10
165
  - type: cosine_precision@1
166
- value: 0.6985714285714286
167
  name: Cosine Precision@1
168
  - type: cosine_precision@3
169
- value: 0.27714285714285714
170
  name: Cosine Precision@3
171
  - type: cosine_precision@5
172
- value: 0.17371428571428568
173
  name: Cosine Precision@5
174
  - type: cosine_precision@10
175
- value: 0.09142857142857141
176
  name: Cosine Precision@10
177
  - type: cosine_recall@1
178
- value: 0.6985714285714286
179
  name: Cosine Recall@1
180
  - type: cosine_recall@3
181
- value: 0.8314285714285714
182
  name: Cosine Recall@3
183
  - type: cosine_recall@5
184
- value: 0.8685714285714285
185
  name: Cosine Recall@5
186
  - type: cosine_recall@10
187
- value: 0.9142857142857143
188
  name: Cosine Recall@10
189
  - type: cosine_ndcg@10
190
- value: 0.8065430842560983
191
  name: Cosine Ndcg@10
192
  - type: cosine_mrr@10
193
- value: 0.7719557823129252
194
  name: Cosine Mrr@10
195
  - type: cosine_map@100
196
- value: 0.775512801809706
197
  name: Cosine Map@100
198
  - task:
199
  type: information-retrieval
@@ -203,49 +216,49 @@ model-index:
203
  type: dim_256
204
  metrics:
205
  - type: cosine_accuracy@1
206
- value: 0.6842857142857143
207
  name: Cosine Accuracy@1
208
  - type: cosine_accuracy@3
209
- value: 0.8214285714285714
210
  name: Cosine Accuracy@3
211
  - type: cosine_accuracy@5
212
- value: 0.8671428571428571
213
  name: Cosine Accuracy@5
214
  - type: cosine_accuracy@10
215
- value: 0.9057142857142857
216
  name: Cosine Accuracy@10
217
  - type: cosine_precision@1
218
- value: 0.6842857142857143
219
  name: Cosine Precision@1
220
  - type: cosine_precision@3
221
- value: 0.2738095238095238
222
  name: Cosine Precision@3
223
  - type: cosine_precision@5
224
- value: 0.1734285714285714
225
  name: Cosine Precision@5
226
  - type: cosine_precision@10
227
- value: 0.09057142857142855
228
  name: Cosine Precision@10
229
  - type: cosine_recall@1
230
- value: 0.6842857142857143
231
  name: Cosine Recall@1
232
  - type: cosine_recall@3
233
- value: 0.8214285714285714
234
  name: Cosine Recall@3
235
  - type: cosine_recall@5
236
- value: 0.8671428571428571
237
  name: Cosine Recall@5
238
  - type: cosine_recall@10
239
- value: 0.9057142857142857
240
  name: Cosine Recall@10
241
  - type: cosine_ndcg@10
242
- value: 0.7965883498968402
243
  name: Cosine Ndcg@10
244
  - type: cosine_mrr@10
245
- value: 0.7613792517006803
246
  name: Cosine Mrr@10
247
  - type: cosine_map@100
248
- value: 0.7655926405987631
249
  name: Cosine Map@100
250
  - task:
251
  type: information-retrieval
@@ -255,49 +268,49 @@ model-index:
255
  type: dim_128
256
  metrics:
257
  - type: cosine_accuracy@1
258
- value: 0.6828571428571428
259
  name: Cosine Accuracy@1
260
  - type: cosine_accuracy@3
261
- value: 0.8157142857142857
262
  name: Cosine Accuracy@3
263
  - type: cosine_accuracy@5
264
- value: 0.8557142857142858
265
  name: Cosine Accuracy@5
266
  - type: cosine_accuracy@10
267
- value: 0.9057142857142857
268
  name: Cosine Accuracy@10
269
  - type: cosine_precision@1
270
- value: 0.6828571428571428
271
  name: Cosine Precision@1
272
  - type: cosine_precision@3
273
- value: 0.27190476190476187
274
  name: Cosine Precision@3
275
  - type: cosine_precision@5
276
- value: 0.17114285714285712
277
  name: Cosine Precision@5
278
  - type: cosine_precision@10
279
- value: 0.09057142857142855
280
  name: Cosine Precision@10
281
  - type: cosine_recall@1
282
- value: 0.6828571428571428
283
  name: Cosine Recall@1
284
  - type: cosine_recall@3
285
- value: 0.8157142857142857
286
  name: Cosine Recall@3
287
  - type: cosine_recall@5
288
- value: 0.8557142857142858
289
  name: Cosine Recall@5
290
  - type: cosine_recall@10
291
- value: 0.9057142857142857
292
  name: Cosine Recall@10
293
  - type: cosine_ndcg@10
294
- value: 0.7942960704612301
295
  name: Cosine Ndcg@10
296
  - type: cosine_mrr@10
297
- value: 0.7586780045351473
298
  name: Cosine Mrr@10
299
  - type: cosine_map@100
300
- value: 0.7624961899058385
301
  name: Cosine Map@100
302
  - task:
303
  type: information-retrieval
@@ -307,49 +320,49 @@ model-index:
307
  type: dim_64
308
  metrics:
309
  - type: cosine_accuracy@1
310
- value: 0.6485714285714286
311
  name: Cosine Accuracy@1
312
  - type: cosine_accuracy@3
313
- value: 0.7771428571428571
314
  name: Cosine Accuracy@3
315
  - type: cosine_accuracy@5
316
- value: 0.8171428571428572
317
  name: Cosine Accuracy@5
318
  - type: cosine_accuracy@10
319
- value: 0.87
320
  name: Cosine Accuracy@10
321
  - type: cosine_precision@1
322
- value: 0.6485714285714286
323
  name: Cosine Precision@1
324
  - type: cosine_precision@3
325
- value: 0.2590476190476191
326
  name: Cosine Precision@3
327
  - type: cosine_precision@5
328
- value: 0.16342857142857142
329
  name: Cosine Precision@5
330
  - type: cosine_precision@10
331
- value: 0.087
332
  name: Cosine Precision@10
333
  - type: cosine_recall@1
334
- value: 0.6485714285714286
335
  name: Cosine Recall@1
336
  - type: cosine_recall@3
337
- value: 0.7771428571428571
338
  name: Cosine Recall@3
339
  - type: cosine_recall@5
340
- value: 0.8171428571428572
341
  name: Cosine Recall@5
342
  - type: cosine_recall@10
343
- value: 0.87
344
  name: Cosine Recall@10
345
  - type: cosine_ndcg@10
346
- value: 0.7582844308652432
347
  name: Cosine Ndcg@10
348
  - type: cosine_mrr@10
349
- value: 0.7225646258503399
350
  name: Cosine Mrr@10
351
  - type: cosine_map@100
352
- value: 0.7276362979042951
353
  name: Cosine Map@100
354
  ---
355
 
@@ -404,9 +417,9 @@ from sentence_transformers import SentenceTransformer
404
  model = SentenceTransformer("bnkc123/bge-base-financial-matryoshka")
405
  # Run inference
406
  sentences = [
407
- 'How much total cash did The Hershey Company use for share repurchases in 2023 excluding excise tax?',
408
- 'In 2023, The Hershey Company used a total of $267.3 million in cash for share repurchases, excluding any excise tax.',
409
- 'Operating income increased $5.8 billion, or 72.8%, in 2023 compared to 2022. The increase in operating income was primarily driven by the absence of $5.8 billion of opioid litigation charges recorded in 2022 and increases in the Pharmacy & Consumer Wellness segment, primarily driven by the absence of a $2.5 billion loss on assets held for sale recorded in 2022 related to the write-down of the Company’s Omnicare® long-term care business which was partially offset by continued pharmacy reimbursement pressure and decreased COVID-19 vaccinations and diagnostic testing compared to 2022, as well as an increase in the Health Services segment.',
410
  ]
411
  embeddings = model.encode(sentences)
412
  print(embeddings.shape)
@@ -458,21 +471,21 @@ You can finetune this model on your own dataset.
458
 
459
  | Metric | Value |
460
  |:--------------------|:-----------|
461
- | cosine_accuracy@1 | 0.6914 |
462
- | cosine_accuracy@3 | 0.8257 |
463
  | cosine_accuracy@5 | 0.8686 |
464
- | cosine_accuracy@10 | 0.9229 |
465
- | cosine_precision@1 | 0.6914 |
466
- | cosine_precision@3 | 0.2752 |
467
  | cosine_precision@5 | 0.1737 |
468
- | cosine_precision@10 | 0.0923 |
469
- | cosine_recall@1 | 0.6914 |
470
- | cosine_recall@3 | 0.8257 |
471
  | cosine_recall@5 | 0.8686 |
472
- | cosine_recall@10 | 0.9229 |
473
- | **cosine_ndcg@10** | **0.8071** |
474
- | cosine_mrr@10 | 0.7702 |
475
- | cosine_map@100 | 0.7732 |
476
 
477
  #### Information Retrieval
478
 
@@ -486,21 +499,21 @@ You can finetune this model on your own dataset.
486
 
487
  | Metric | Value |
488
  |:--------------------|:-----------|
489
- | cosine_accuracy@1 | 0.6986 |
490
- | cosine_accuracy@3 | 0.8314 |
491
- | cosine_accuracy@5 | 0.8686 |
492
- | cosine_accuracy@10 | 0.9143 |
493
- | cosine_precision@1 | 0.6986 |
494
- | cosine_precision@3 | 0.2771 |
495
- | cosine_precision@5 | 0.1737 |
496
- | cosine_precision@10 | 0.0914 |
497
- | cosine_recall@1 | 0.6986 |
498
- | cosine_recall@3 | 0.8314 |
499
- | cosine_recall@5 | 0.8686 |
500
- | cosine_recall@10 | 0.9143 |
501
- | **cosine_ndcg@10** | **0.8065** |
502
- | cosine_mrr@10 | 0.772 |
503
- | cosine_map@100 | 0.7755 |
504
 
505
  #### Information Retrieval
506
 
@@ -514,21 +527,21 @@ You can finetune this model on your own dataset.
514
 
515
  | Metric | Value |
516
  |:--------------------|:-----------|
517
- | cosine_accuracy@1 | 0.6843 |
518
- | cosine_accuracy@3 | 0.8214 |
519
- | cosine_accuracy@5 | 0.8671 |
520
- | cosine_accuracy@10 | 0.9057 |
521
- | cosine_precision@1 | 0.6843 |
522
- | cosine_precision@3 | 0.2738 |
523
- | cosine_precision@5 | 0.1734 |
524
- | cosine_precision@10 | 0.0906 |
525
- | cosine_recall@1 | 0.6843 |
526
- | cosine_recall@3 | 0.8214 |
527
- | cosine_recall@5 | 0.8671 |
528
- | cosine_recall@10 | 0.9057 |
529
- | **cosine_ndcg@10** | **0.7966** |
530
- | cosine_mrr@10 | 0.7614 |
531
- | cosine_map@100 | 0.7656 |
532
 
533
  #### Information Retrieval
534
 
@@ -542,21 +555,21 @@ You can finetune this model on your own dataset.
542
 
543
  | Metric | Value |
544
  |:--------------------|:-----------|
545
- | cosine_accuracy@1 | 0.6829 |
546
- | cosine_accuracy@3 | 0.8157 |
547
- | cosine_accuracy@5 | 0.8557 |
548
- | cosine_accuracy@10 | 0.9057 |
549
- | cosine_precision@1 | 0.6829 |
550
- | cosine_precision@3 | 0.2719 |
551
- | cosine_precision@5 | 0.1711 |
552
- | cosine_precision@10 | 0.0906 |
553
- | cosine_recall@1 | 0.6829 |
554
- | cosine_recall@3 | 0.8157 |
555
- | cosine_recall@5 | 0.8557 |
556
- | cosine_recall@10 | 0.9057 |
557
- | **cosine_ndcg@10** | **0.7943** |
558
- | cosine_mrr@10 | 0.7587 |
559
- | cosine_map@100 | 0.7625 |
560
 
561
  #### Information Retrieval
562
 
@@ -570,21 +583,21 @@ You can finetune this model on your own dataset.
570
 
571
  | Metric | Value |
572
  |:--------------------|:-----------|
573
- | cosine_accuracy@1 | 0.6486 |
574
- | cosine_accuracy@3 | 0.7771 |
575
- | cosine_accuracy@5 | 0.8171 |
576
- | cosine_accuracy@10 | 0.87 |
577
- | cosine_precision@1 | 0.6486 |
578
- | cosine_precision@3 | 0.259 |
579
- | cosine_precision@5 | 0.1634 |
580
- | cosine_precision@10 | 0.087 |
581
- | cosine_recall@1 | 0.6486 |
582
- | cosine_recall@3 | 0.7771 |
583
- | cosine_recall@5 | 0.8171 |
584
- | cosine_recall@10 | 0.87 |
585
- | **cosine_ndcg@10** | **0.7583** |
586
- | cosine_mrr@10 | 0.7226 |
587
- | cosine_map@100 | 0.7276 |
588
 
589
  <!--
590
  ## Bias, Risks and Limitations
@@ -608,16 +621,16 @@ You can finetune this model on your own dataset.
608
  * Size: 6,300 training samples
609
  * Columns: <code>anchor</code> and <code>positive</code>
610
  * Approximate statistics based on the first 1000 samples:
611
- | | anchor | positive |
612
- |:--------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
613
- | type | string | string |
614
- | details | <ul><li>min: 9 tokens</li><li>mean: 20.65 tokens</li><li>max: 51 tokens</li></ul> | <ul><li>min: 10 tokens</li><li>mean: 45.4 tokens</li><li>max: 512 tokens</li></ul> |
615
  * Samples:
616
- | anchor | positive |
617
- |:------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
618
- | <code>How much cash did FedEx have at the end of May 2023?</code> | <code>FedEx reported having $6.9 billion in cash and cash equivalents at the end of May 2023.</code> |
619
- | <code>What were Caterpillar's total obligations for the purchase of goods and services as of December 31, 2023?</code> | <code>We have short-term obligations related to the purchase of goods and services made in the ordinary course of business. These consist of invoices received and recorded as liabilities as of December 31, 2023, but scheduled for payment in 2024 of $7.91 billion.</code> |
620
- | <code>What was the total number of outstanding stock option awards at the beginning and end of 2023, and what were their weighted average exercise prices?</code> | <code>Stock option activity under the Plan for the years ended reveals that stock options both started and ended with 6.2 million outstanding in 2023. The weighted average exercise price at the beginning of the year was $50.40 and $50.42 at the end.</code> |
621
  * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
622
  ```json
623
  {
@@ -782,14 +795,14 @@ You can finetune this model on your own dataset.
782
  ### Training Logs
783
  | Epoch | Step | Training Loss | dim_768_cosine_ndcg@10 | dim_512_cosine_ndcg@10 | dim_256_cosine_ndcg@10 | dim_128_cosine_ndcg@10 | dim_64_cosine_ndcg@10 |
784
  |:---------:|:------:|:-------------:|:----------------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|
785
- | 0.8122 | 10 | 25.3869 | - | - | - | - | - |
786
- | 1.0 | 13 | - | 0.7943 | 0.7907 | 0.7884 | 0.7756 | 0.7419 |
787
- | 1.5685 | 20 | 9.8731 | - | - | - | - | - |
788
- | 2.0 | 26 | - | 0.8040 | 0.8032 | 0.7939 | 0.7906 | 0.7553 |
789
- | 2.3249 | 30 | 7.6627 | - | - | - | - | - |
790
- | 3.0 | 39 | - | 0.8067 | 0.8054 | 0.7989 | 0.7930 | 0.7584 |
791
- | 3.0812 | 40 | 6.5397 | - | - | - | - | - |
792
- | **3.731** | **48** | **-** | **0.8071** | **0.8065** | **0.7966** | **0.7943** | **0.7583** |
793
 
794
  * The bold row denotes the saved checkpoint.
795
 
 
12
  - loss:MultipleNegativesRankingLoss
13
  base_model: BAAI/bge-base-en-v1.5
14
  widget:
15
+ - source_sentence: What are the components of Comcast's domestic distribution revenue?
 
16
  sentences:
17
+ - Cash used in investing activities was $2.3 billion for fiscal 2023, compared to
18
+ $2.1 billion for fiscal 2022.
19
+ - Domestic distribution revenue primarily includes revenue generated from the distribution
20
+ of our television networks operating predominantly in the United States to traditional
21
+ and virtual multichannel video providers, and from NBC-affiliated and Telemundo-affiliated
22
+ local broadcast television stations. Our revenue from distribution agreements
23
+ is generally based on the number of subscribers receiving the programming on our
24
+ television networks and a per subscriber fee. Distribution revenue also includes
25
+ Peacock subscription fees.
26
+ - In January 2023, Alphabet Inc. announced a reduction of its workforce, consequently
27
+ recording employee severance and related charges of $2.1 billion for the year.
28
+ - source_sentence: What was the noncash pre-tax impairment charge recorded due to
29
+ the disposal of Vrio's operations in 2021, and what are the main components contributing
30
+ to this amount?
31
  sentences:
32
+ - The cash equities rate per contract (per 100 shares) for NYSE increased by 6%,
33
+ from $0.045 in 2022 to $0.048 in 2023.
34
+ - In the second quarter of 2021, we classified the Vrio disposal group as held-for-sale
35
+ and reported the disposal group at fair value less cost to sell, which resulted
36
+ in a noncash, pre-tax impairment charge of $4,555, including approximately $2,100
37
+ related to accumulated foreign currency translation adjustments and $2,500 related
38
+ to property, plant and equipment and intangible assets.
39
+ - 'SECRET LAIR - our internet-based storefront where MAGIC: THE GATHERING fans can
40
+ purchase exclusive and limited versions of cards.'
41
+ - source_sentence: What does the Corporate and Other segment include in its composition?
42
  sentences:
43
+ - The segment consists of unallocated corporate expenses and administrative costs
44
+ and activities not considered when evaluating segment performance as well as certain
45
+ assets benefiting more than one segment. In addition, intersegment transactions
46
+ are eliminated within the Corporate and Other segment.
47
+ - Net cash provided by (used in) operating activities was recorded at $20,930 million
48
+ for the reported year.
49
+ - Forward-Looking Statements Certain statements in this report, other than purely
50
+ historical information, including estimates, projections, statements relating
51
+ to our business plans, objectives and expected operating results, and the assumptions
52
+ upon which those statements are based, are “forward-looking statements” within
53
+ the meaning of the Private Securities Litigation Reform Act of 1995, Section 27A
54
+ of the Securities Act of 1933 and Section 21E of the Securities Exchange Act of
55
+ 1934.
56
+ - source_sentence: What was the purchase price for the repurchase of Mobility preferred
57
+ interests by AT&T in 2023?
58
  sentences:
59
+ - Net revenue increased $1.5 billion, or 19%, to $9.6 billion in 2023 from $8.1
60
+ billion in 2022. On a constant dollar basis, net revenue increased 20%. Comparable
61
+ sales increased 13%, or 14% on a constant dollar basis. The increase in net revenue
62
+ was primarily due to increased Americas net revenue. China Mainland and Rest of
63
+ World net revenue also increased.
64
+ - Google Services includes products and services such as ads, Android, Chrome, devices,
65
+ Google Maps, Google Play, Search, and YouTube. Google Services generates revenues
66
+ primarily from advertising; fees received for consumer subscription-based products
67
+ such. as YouTube TV, YouTube Music and Premium, and NFL Sunday Ticket; and the
68
+ sale of apps and in-app purchases and devices.
69
+ - In April 2023, we also accepted the December 2022 put option notice from the AT&T
70
+ pension trust and repurchased the remaining 213 million Mobility preferred interests
71
+ for a purchase price, including accrued and unpaid distributions, of $5,414.
72
+ - source_sentence: What is the maximum leverage ratio allowed before default under
73
+ the company's credit facility?
74
  sentences:
75
+ - If the company's leverage ratio exceeds 3.50 to 1, it would be in default of its
76
+ revolving credit facility, impairing its ability to borrow under the facility.
77
+ - Research and Development Because the industries in which the Company competes
78
+ are characterized by rapid technological advances, the Company’s ability to compete
79
+ successfully depends heavily upon its ability to ensure a continual and timely
80
+ flow of competitive products, services and technologies to the marketplace.
81
+ - Visa is focused on extending, enhancing and investing in VisaNet, their proprietary
82
+ advanced transaction processing network, to offer a single connection point for
83
+ facilitating payment transactions to multiple endpoints through various form factors.
 
 
 
84
  datasets:
85
  - philschmid/finanical-rag-embedding-dataset
86
  pipeline_tag: sentence-similarity
 
112
  type: dim_768
113
  metrics:
114
  - type: cosine_accuracy@1
115
+ value: 0.6771428571428572
116
  name: Cosine Accuracy@1
117
  - type: cosine_accuracy@3
118
+ value: 0.8371428571428572
119
  name: Cosine Accuracy@3
120
  - type: cosine_accuracy@5
121
  value: 0.8685714285714285
122
  name: Cosine Accuracy@5
123
  - type: cosine_accuracy@10
124
+ value: 0.9185714285714286
125
  name: Cosine Accuracy@10
126
  - type: cosine_precision@1
127
+ value: 0.6771428571428572
128
  name: Cosine Precision@1
129
  - type: cosine_precision@3
130
+ value: 0.27904761904761904
131
  name: Cosine Precision@3
132
  - type: cosine_precision@5
133
+ value: 0.17371428571428568
134
  name: Cosine Precision@5
135
  - type: cosine_precision@10
136
+ value: 0.09185714285714283
137
  name: Cosine Precision@10
138
  - type: cosine_recall@1
139
+ value: 0.6771428571428572
140
  name: Cosine Recall@1
141
  - type: cosine_recall@3
142
+ value: 0.8371428571428572
143
  name: Cosine Recall@3
144
  - type: cosine_recall@5
145
  value: 0.8685714285714285
146
  name: Cosine Recall@5
147
  - type: cosine_recall@10
148
+ value: 0.9185714285714286
149
  name: Cosine Recall@10
150
  - type: cosine_ndcg@10
151
+ value: 0.800782444183487
152
  name: Cosine Ndcg@10
153
  - type: cosine_mrr@10
154
+ value: 0.762721088435374
155
  name: Cosine Mrr@10
156
  - type: cosine_map@100
157
+ value: 0.7655884035994069
158
  name: Cosine Map@100
159
  - task:
160
  type: information-retrieval
 
164
  type: dim_512
165
  metrics:
166
  - type: cosine_accuracy@1
167
+ value: 0.6828571428571428
168
  name: Cosine Accuracy@1
169
  - type: cosine_accuracy@3
170
+ value: 0.8371428571428572
171
  name: Cosine Accuracy@3
172
  - type: cosine_accuracy@5
173
+ value: 0.8757142857142857
174
  name: Cosine Accuracy@5
175
  - type: cosine_accuracy@10
176
+ value: 0.92
177
  name: Cosine Accuracy@10
178
  - type: cosine_precision@1
179
+ value: 0.6828571428571428
180
  name: Cosine Precision@1
181
  - type: cosine_precision@3
182
+ value: 0.27904761904761904
183
  name: Cosine Precision@3
184
  - type: cosine_precision@5
185
+ value: 0.17514285714285713
186
  name: Cosine Precision@5
187
  - type: cosine_precision@10
188
+ value: 0.09199999999999998
189
  name: Cosine Precision@10
190
  - type: cosine_recall@1
191
+ value: 0.6828571428571428
192
  name: Cosine Recall@1
193
  - type: cosine_recall@3
194
+ value: 0.8371428571428572
195
  name: Cosine Recall@3
196
  - type: cosine_recall@5
197
+ value: 0.8757142857142857
198
  name: Cosine Recall@5
199
  - type: cosine_recall@10
200
+ value: 0.92
201
  name: Cosine Recall@10
202
  - type: cosine_ndcg@10
203
+ value: 0.80444342170685
204
  name: Cosine Ndcg@10
205
  - type: cosine_mrr@10
206
+ value: 0.7670583900226756
207
  name: Cosine Mrr@10
208
  - type: cosine_map@100
209
+ value: 0.7699510134898729
210
  name: Cosine Map@100
211
  - task:
212
  type: information-retrieval
 
216
  type: dim_256
217
  metrics:
218
  - type: cosine_accuracy@1
219
+ value: 0.6757142857142857
220
  name: Cosine Accuracy@1
221
  - type: cosine_accuracy@3
222
+ value: 0.8228571428571428
223
  name: Cosine Accuracy@3
224
  - type: cosine_accuracy@5
225
+ value: 0.8642857142857143
226
  name: Cosine Accuracy@5
227
  - type: cosine_accuracy@10
228
+ value: 0.9185714285714286
229
  name: Cosine Accuracy@10
230
  - type: cosine_precision@1
231
+ value: 0.6757142857142857
232
  name: Cosine Precision@1
233
  - type: cosine_precision@3
234
+ value: 0.2742857142857143
235
  name: Cosine Precision@3
236
  - type: cosine_precision@5
237
+ value: 0.17285714285714285
238
  name: Cosine Precision@5
239
  - type: cosine_precision@10
240
+ value: 0.09185714285714283
241
  name: Cosine Precision@10
242
  - type: cosine_recall@1
243
+ value: 0.6757142857142857
244
  name: Cosine Recall@1
245
  - type: cosine_recall@3
246
+ value: 0.8228571428571428
247
  name: Cosine Recall@3
248
  - type: cosine_recall@5
249
+ value: 0.8642857142857143
250
  name: Cosine Recall@5
251
  - type: cosine_recall@10
252
+ value: 0.9185714285714286
253
  name: Cosine Recall@10
254
  - type: cosine_ndcg@10
255
+ value: 0.7984105242762846
256
  name: Cosine Ndcg@10
257
  - type: cosine_mrr@10
258
+ value: 0.7599024943310656
259
  name: Cosine Mrr@10
260
  - type: cosine_map@100
261
+ value: 0.7625291382895937
262
  name: Cosine Map@100
263
  - task:
264
  type: information-retrieval
 
268
  type: dim_128
269
  metrics:
270
  - type: cosine_accuracy@1
271
+ value: 0.6714285714285714
272
  name: Cosine Accuracy@1
273
  - type: cosine_accuracy@3
274
+ value: 0.8114285714285714
275
  name: Cosine Accuracy@3
276
  - type: cosine_accuracy@5
277
+ value: 0.8485714285714285
278
  name: Cosine Accuracy@5
279
  - type: cosine_accuracy@10
280
+ value: 0.9014285714285715
281
  name: Cosine Accuracy@10
282
  - type: cosine_precision@1
283
+ value: 0.6714285714285714
284
  name: Cosine Precision@1
285
  - type: cosine_precision@3
286
+ value: 0.2704761904761904
287
  name: Cosine Precision@3
288
  - type: cosine_precision@5
289
+ value: 0.16971428571428568
290
  name: Cosine Precision@5
291
  - type: cosine_precision@10
292
+ value: 0.09014285714285714
293
  name: Cosine Precision@10
294
  - type: cosine_recall@1
295
+ value: 0.6714285714285714
296
  name: Cosine Recall@1
297
  - type: cosine_recall@3
298
+ value: 0.8114285714285714
299
  name: Cosine Recall@3
300
  - type: cosine_recall@5
301
+ value: 0.8485714285714285
302
  name: Cosine Recall@5
303
  - type: cosine_recall@10
304
+ value: 0.9014285714285715
305
  name: Cosine Recall@10
306
  - type: cosine_ndcg@10
307
+ value: 0.7872870842648211
308
  name: Cosine Ndcg@10
309
  - type: cosine_mrr@10
310
+ value: 0.7507193877551018
311
  name: Cosine Mrr@10
312
  - type: cosine_map@100
313
+ value: 0.7542921487122674
314
  name: Cosine Map@100
315
  - task:
316
  type: information-retrieval
 
320
  type: dim_64
321
  metrics:
322
  - type: cosine_accuracy@1
323
+ value: 0.6242857142857143
324
  name: Cosine Accuracy@1
325
  - type: cosine_accuracy@3
326
+ value: 0.7842857142857143
327
  name: Cosine Accuracy@3
328
  - type: cosine_accuracy@5
329
+ value: 0.82
330
  name: Cosine Accuracy@5
331
  - type: cosine_accuracy@10
332
+ value: 0.8828571428571429
333
  name: Cosine Accuracy@10
334
  - type: cosine_precision@1
335
+ value: 0.6242857142857143
336
  name: Cosine Precision@1
337
  - type: cosine_precision@3
338
+ value: 0.26142857142857145
339
  name: Cosine Precision@3
340
  - type: cosine_precision@5
341
+ value: 0.16399999999999998
342
  name: Cosine Precision@5
343
  - type: cosine_precision@10
344
+ value: 0.08828571428571429
345
  name: Cosine Precision@10
346
  - type: cosine_recall@1
347
+ value: 0.6242857142857143
348
  name: Cosine Recall@1
349
  - type: cosine_recall@3
350
+ value: 0.7842857142857143
351
  name: Cosine Recall@3
352
  - type: cosine_recall@5
353
+ value: 0.82
354
  name: Cosine Recall@5
355
  - type: cosine_recall@10
356
+ value: 0.8828571428571429
357
  name: Cosine Recall@10
358
  - type: cosine_ndcg@10
359
+ value: 0.7546358861091382
360
  name: Cosine Ndcg@10
361
  - type: cosine_mrr@10
362
+ value: 0.7135277777777775
363
  name: Cosine Mrr@10
364
  - type: cosine_map@100
365
+ value: 0.7174129354945035
366
  name: Cosine Map@100
367
  ---
368
 
 
417
  model = SentenceTransformer("bnkc123/bge-base-financial-matryoshka")
418
  # Run inference
419
  sentences = [
420
+ "What is the maximum leverage ratio allowed before default under the company's credit facility?",
421
+ "If the company's leverage ratio exceeds 3.50 to 1, it would be in default of its revolving credit facility, impairing its ability to borrow under the facility.",
422
+ 'Research and Development Because the industries in which the Company competes are characterized by rapid technological advances, the Company’s ability to compete successfully depends heavily upon its ability to ensure a continual and timely flow of competitive products, services and technologies to the marketplace.',
423
  ]
424
  embeddings = model.encode(sentences)
425
  print(embeddings.shape)
 
471
 
472
  | Metric | Value |
473
  |:--------------------|:-----------|
474
+ | cosine_accuracy@1 | 0.6771 |
475
+ | cosine_accuracy@3 | 0.8371 |
476
  | cosine_accuracy@5 | 0.8686 |
477
+ | cosine_accuracy@10 | 0.9186 |
478
+ | cosine_precision@1 | 0.6771 |
479
+ | cosine_precision@3 | 0.279 |
480
  | cosine_precision@5 | 0.1737 |
481
+ | cosine_precision@10 | 0.0919 |
482
+ | cosine_recall@1 | 0.6771 |
483
+ | cosine_recall@3 | 0.8371 |
484
  | cosine_recall@5 | 0.8686 |
485
+ | cosine_recall@10 | 0.9186 |
486
+ | **cosine_ndcg@10** | **0.8008** |
487
+ | cosine_mrr@10 | 0.7627 |
488
+ | cosine_map@100 | 0.7656 |
489
 
490
  #### Information Retrieval
491
 
 
499
 
500
  | Metric | Value |
501
  |:--------------------|:-----------|
502
+ | cosine_accuracy@1 | 0.6829 |
503
+ | cosine_accuracy@3 | 0.8371 |
504
+ | cosine_accuracy@5 | 0.8757 |
505
+ | cosine_accuracy@10 | 0.92 |
506
+ | cosine_precision@1 | 0.6829 |
507
+ | cosine_precision@3 | 0.279 |
508
+ | cosine_precision@5 | 0.1751 |
509
+ | cosine_precision@10 | 0.092 |
510
+ | cosine_recall@1 | 0.6829 |
511
+ | cosine_recall@3 | 0.8371 |
512
+ | cosine_recall@5 | 0.8757 |
513
+ | cosine_recall@10 | 0.92 |
514
+ | **cosine_ndcg@10** | **0.8044** |
515
+ | cosine_mrr@10 | 0.7671 |
516
+ | cosine_map@100 | 0.77 |
517
 
518
  #### Information Retrieval
519
 
 
527
 
528
  | Metric | Value |
529
  |:--------------------|:-----------|
530
+ | cosine_accuracy@1 | 0.6757 |
531
+ | cosine_accuracy@3 | 0.8229 |
532
+ | cosine_accuracy@5 | 0.8643 |
533
+ | cosine_accuracy@10 | 0.9186 |
534
+ | cosine_precision@1 | 0.6757 |
535
+ | cosine_precision@3 | 0.2743 |
536
+ | cosine_precision@5 | 0.1729 |
537
+ | cosine_precision@10 | 0.0919 |
538
+ | cosine_recall@1 | 0.6757 |
539
+ | cosine_recall@3 | 0.8229 |
540
+ | cosine_recall@5 | 0.8643 |
541
+ | cosine_recall@10 | 0.9186 |
542
+ | **cosine_ndcg@10** | **0.7984** |
543
+ | cosine_mrr@10 | 0.7599 |
544
+ | cosine_map@100 | 0.7625 |
545
 
546
  #### Information Retrieval
547
 
 
555
 
556
  | Metric | Value |
557
  |:--------------------|:-----------|
558
+ | cosine_accuracy@1 | 0.6714 |
559
+ | cosine_accuracy@3 | 0.8114 |
560
+ | cosine_accuracy@5 | 0.8486 |
561
+ | cosine_accuracy@10 | 0.9014 |
562
+ | cosine_precision@1 | 0.6714 |
563
+ | cosine_precision@3 | 0.2705 |
564
+ | cosine_precision@5 | 0.1697 |
565
+ | cosine_precision@10 | 0.0901 |
566
+ | cosine_recall@1 | 0.6714 |
567
+ | cosine_recall@3 | 0.8114 |
568
+ | cosine_recall@5 | 0.8486 |
569
+ | cosine_recall@10 | 0.9014 |
570
+ | **cosine_ndcg@10** | **0.7873** |
571
+ | cosine_mrr@10 | 0.7507 |
572
+ | cosine_map@100 | 0.7543 |
573
 
574
  #### Information Retrieval
575
 
 
583
 
584
  | Metric | Value |
585
  |:--------------------|:-----------|
586
+ | cosine_accuracy@1 | 0.6243 |
587
+ | cosine_accuracy@3 | 0.7843 |
588
+ | cosine_accuracy@5 | 0.82 |
589
+ | cosine_accuracy@10 | 0.8829 |
590
+ | cosine_precision@1 | 0.6243 |
591
+ | cosine_precision@3 | 0.2614 |
592
+ | cosine_precision@5 | 0.164 |
593
+ | cosine_precision@10 | 0.0883 |
594
+ | cosine_recall@1 | 0.6243 |
595
+ | cosine_recall@3 | 0.7843 |
596
+ | cosine_recall@5 | 0.82 |
597
+ | cosine_recall@10 | 0.8829 |
598
+ | **cosine_ndcg@10** | **0.7546** |
599
+ | cosine_mrr@10 | 0.7135 |
600
+ | cosine_map@100 | 0.7174 |
601
 
602
  <!--
603
  ## Bias, Risks and Limitations
 
621
  * Size: 6,300 training samples
622
  * Columns: <code>anchor</code> and <code>positive</code>
623
  * Approximate statistics based on the first 1000 samples:
624
+ | | anchor | positive |
625
+ |:--------|:---------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
626
+ | type | string | string |
627
+ | details | <ul><li>min: 7 tokens</li><li>mean: 20.5 tokens</li><li>max: 43 tokens</li></ul> | <ul><li>min: 9 tokens</li><li>mean: 46.09 tokens</li><li>max: 512 tokens</li></ul> |
628
  * Samples:
629
+ | anchor | positive |
630
+ |:----------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
631
+ | <code>What was the amount of premiums written by Berkshire Hathaway's Insurance Underwriting in 2023, and how did it compare to the previous year?</code> | <code>Premiums written increased $3.5 billion (24.1%) in 2023 compared to 2022. The increase was primarily due to RSUI and CapSpecialty ($2.1 billion), as well as comparative increases from BHSI and BH Direct, and to a lesser extent the other businesses. Premiums written | $ | 18,142 | | | | $ | 14,619 |</code> |
632
+ | <code>What types of transportation equipment does XTRA Corporation manage in its fleet?</code> | <code>XTRA manages a diverse fleet of approximately 90,000 units located at 47 facilities throughout the U.S. The fleet includes over-the-road and storage trailers, chassis, temperature-controlled vans and flatbed trailers.</code> |
633
+ | <code>What seasonal trends affect the company's sales volumes?</code> | <code>Sales volumes for the company are highest in the second fiscal quarter due to seasonal influences, particularly during the spring season in the regions it serves.</code> |
634
  * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
635
  ```json
636
  {
 
795
  ### Training Logs
796
  | Epoch | Step | Training Loss | dim_768_cosine_ndcg@10 | dim_512_cosine_ndcg@10 | dim_256_cosine_ndcg@10 | dim_128_cosine_ndcg@10 | dim_64_cosine_ndcg@10 |
797
  |:---------:|:------:|:-------------:|:----------------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|
798
+ | 0.8122 | 10 | 25.483 | - | - | - | - | - |
799
+ | 1.0 | 13 | - | 0.7890 | 0.7887 | 0.7815 | 0.7647 | 0.7280 |
800
+ | 1.5685 | 20 | 9.1323 | - | - | - | - | - |
801
+ | 2.0 | 26 | - | 0.7952 | 0.7982 | 0.7933 | 0.7801 | 0.7477 |
802
+ | 2.3249 | 30 | 6.7535 | - | - | - | - | - |
803
+ | 3.0 | 39 | - | 0.8019 | 0.8048 | 0.7989 | 0.7865 | 0.7547 |
804
+ | 3.0812 | 40 | 6.5646 | - | - | - | - | - |
805
+ | **3.731** | **48** | **-** | **0.8008** | **0.8044** | **0.7984** | **0.7873** | **0.7546** |
806
 
807
  * The bold row denotes the saved checkpoint.
808