BGE base Financial Matryoshka
This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5 on the finanical-rag-embedding-dataset dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-base-en-v1.5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
- Language: en
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("bnkc123/bge-base-financial-matryoshka")
# Run inference
sentences = [
"What is the maximum leverage ratio allowed before default under the company's credit facility?",
"If the company's leverage ratio exceeds 3.50 to 1, it would be in default of its revolving credit facility, impairing its ability to borrow under the facility.",
'Research and Development Because the industries in which the Company competes are characterized by rapid technological advances, the Company’s ability to compete successfully depends heavily upon its ability to ensure a continual and timely flow of competitive products, services and technologies to the marketplace.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Dataset:
dim_768
- Evaluated with
InformationRetrievalEvaluator
with these parameters:{ "truncate_dim": 768 }
Metric | Value |
---|---|
cosine_accuracy@1 | 0.6771 |
cosine_accuracy@3 | 0.8371 |
cosine_accuracy@5 | 0.8686 |
cosine_accuracy@10 | 0.9186 |
cosine_precision@1 | 0.6771 |
cosine_precision@3 | 0.279 |
cosine_precision@5 | 0.1737 |
cosine_precision@10 | 0.0919 |
cosine_recall@1 | 0.6771 |
cosine_recall@3 | 0.8371 |
cosine_recall@5 | 0.8686 |
cosine_recall@10 | 0.9186 |
cosine_ndcg@10 | 0.8008 |
cosine_mrr@10 | 0.7627 |
cosine_map@100 | 0.7656 |
Information Retrieval
- Dataset:
dim_512
- Evaluated with
InformationRetrievalEvaluator
with these parameters:{ "truncate_dim": 512 }
Metric | Value |
---|---|
cosine_accuracy@1 | 0.6829 |
cosine_accuracy@3 | 0.8371 |
cosine_accuracy@5 | 0.8757 |
cosine_accuracy@10 | 0.92 |
cosine_precision@1 | 0.6829 |
cosine_precision@3 | 0.279 |
cosine_precision@5 | 0.1751 |
cosine_precision@10 | 0.092 |
cosine_recall@1 | 0.6829 |
cosine_recall@3 | 0.8371 |
cosine_recall@5 | 0.8757 |
cosine_recall@10 | 0.92 |
cosine_ndcg@10 | 0.8044 |
cosine_mrr@10 | 0.7671 |
cosine_map@100 | 0.77 |
Information Retrieval
- Dataset:
dim_256
- Evaluated with
InformationRetrievalEvaluator
with these parameters:{ "truncate_dim": 256 }
Metric | Value |
---|---|
cosine_accuracy@1 | 0.6757 |
cosine_accuracy@3 | 0.8229 |
cosine_accuracy@5 | 0.8643 |
cosine_accuracy@10 | 0.9186 |
cosine_precision@1 | 0.6757 |
cosine_precision@3 | 0.2743 |
cosine_precision@5 | 0.1729 |
cosine_precision@10 | 0.0919 |
cosine_recall@1 | 0.6757 |
cosine_recall@3 | 0.8229 |
cosine_recall@5 | 0.8643 |
cosine_recall@10 | 0.9186 |
cosine_ndcg@10 | 0.7984 |
cosine_mrr@10 | 0.7599 |
cosine_map@100 | 0.7625 |
Information Retrieval
- Dataset:
dim_128
- Evaluated with
InformationRetrievalEvaluator
with these parameters:{ "truncate_dim": 128 }
Metric | Value |
---|---|
cosine_accuracy@1 | 0.6714 |
cosine_accuracy@3 | 0.8114 |
cosine_accuracy@5 | 0.8486 |
cosine_accuracy@10 | 0.9014 |
cosine_precision@1 | 0.6714 |
cosine_precision@3 | 0.2705 |
cosine_precision@5 | 0.1697 |
cosine_precision@10 | 0.0901 |
cosine_recall@1 | 0.6714 |
cosine_recall@3 | 0.8114 |
cosine_recall@5 | 0.8486 |
cosine_recall@10 | 0.9014 |
cosine_ndcg@10 | 0.7873 |
cosine_mrr@10 | 0.7507 |
cosine_map@100 | 0.7543 |
Information Retrieval
- Dataset:
dim_64
- Evaluated with
InformationRetrievalEvaluator
with these parameters:{ "truncate_dim": 64 }
Metric | Value |
---|---|
cosine_accuracy@1 | 0.6243 |
cosine_accuracy@3 | 0.7843 |
cosine_accuracy@5 | 0.82 |
cosine_accuracy@10 | 0.8829 |
cosine_precision@1 | 0.6243 |
cosine_precision@3 | 0.2614 |
cosine_precision@5 | 0.164 |
cosine_precision@10 | 0.0883 |
cosine_recall@1 | 0.6243 |
cosine_recall@3 | 0.7843 |
cosine_recall@5 | 0.82 |
cosine_recall@10 | 0.8829 |
cosine_ndcg@10 | 0.7546 |
cosine_mrr@10 | 0.7135 |
cosine_map@100 | 0.7174 |
Training Details
Training Dataset
finanical-rag-embedding-dataset
- Dataset: finanical-rag-embedding-dataset at e0b1781
- Size: 6,300 training samples
- Columns:
anchor
andpositive
- Approximate statistics based on the first 1000 samples:
anchor positive type string string details - min: 7 tokens
- mean: 20.5 tokens
- max: 43 tokens
- min: 9 tokens
- mean: 46.09 tokens
- max: 512 tokens
- Samples:
anchor positive What was the amount of premiums written by Berkshire Hathaway's Insurance Underwriting in 2023, and how did it compare to the previous year?
Premiums written increased $3.5 billion (24.1%) in 2023 compared to 2022. The increase was primarily due to RSUI and CapSpecialty ($2.1 billion), as well as comparative increases from BHSI and BH Direct, and to a lesser extent the other businesses. Premiums written
What types of transportation equipment does XTRA Corporation manage in its fleet?
XTRA manages a diverse fleet of approximately 90,000 units located at 47 facilities throughout the U.S. The fleet includes over-the-road and storage trailers, chassis, temperature-controlled vans and flatbed trailers.
What seasonal trends affect the company's sales volumes?
Sales volumes for the company are highest in the second fiscal quarter due to seasonal influences, particularly during the spring season in the regions it serves.
- Loss:
MatryoshkaLoss
with these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epochper_device_train_batch_size
: 32per_device_eval_batch_size
: 16gradient_accumulation_steps
: 16learning_rate
: 2e-05num_train_epochs
: 4lr_scheduler_type
: cosinewarmup_ratio
: 0.1bf16
: Truetf32
: Trueload_best_model_at_end
: Trueoptim
: adamw_torch_fusedpush_to_hub
: Truehub_model_id
: bnkc123/bge-base-financial-matryoshkabatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: epochprediction_loss_only
: Trueper_device_train_batch_size
: 32per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 16eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 4max_steps
: -1lr_scheduler_type
: cosinelr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Truelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}tp_size
: 0fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torch_fusedoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Trueresume_from_checkpoint
: Nonehub_model_id
: bnkc123/bge-base-financial-matryoshkahub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | dim_768_cosine_ndcg@10 | dim_512_cosine_ndcg@10 | dim_256_cosine_ndcg@10 | dim_128_cosine_ndcg@10 | dim_64_cosine_ndcg@10 |
---|---|---|---|---|---|---|---|
0.8122 | 10 | 25.483 | - | - | - | - | - |
1.0 | 13 | - | 0.7890 | 0.7887 | 0.7815 | 0.7647 | 0.7280 |
1.5685 | 20 | 9.1323 | - | - | - | - | - |
2.0 | 26 | - | 0.7952 | 0.7982 | 0.7933 | 0.7801 | 0.7477 |
2.3249 | 30 | 6.7535 | - | - | - | - | - |
3.0 | 39 | - | 0.8019 | 0.8048 | 0.7989 | 0.7865 | 0.7547 |
3.0812 | 40 | 6.5646 | - | - | - | - | - |
3.731 | 48 | - | 0.8008 | 0.8044 | 0.7984 | 0.7873 | 0.7546 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.12.6
- Sentence Transformers: 4.1.0
- Transformers: 4.51.3
- PyTorch: 2.7.0+cu126
- Accelerate: 1.6.0
- Datasets: 3.5.1
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 12
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for bnkc123/bge-base-financial-matryoshka
Base model
BAAI/bge-base-en-v1.5Dataset used to train bnkc123/bge-base-financial-matryoshka
Evaluation results
- Cosine Accuracy@1 on dim 768self-reported0.677
- Cosine Accuracy@3 on dim 768self-reported0.837
- Cosine Accuracy@5 on dim 768self-reported0.869
- Cosine Accuracy@10 on dim 768self-reported0.919
- Cosine Precision@1 on dim 768self-reported0.677
- Cosine Precision@3 on dim 768self-reported0.279
- Cosine Precision@5 on dim 768self-reported0.174
- Cosine Precision@10 on dim 768self-reported0.092
- Cosine Recall@1 on dim 768self-reported0.677
- Cosine Recall@3 on dim 768self-reported0.837