evacun-lemmatization-vanilla

This model is a fine-tuned version of bowphs/evacun2025-1 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4795
  • Exact Match: 0.8701

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Exact Match
0.4563 1.0 4572 0.5323 0.6769
0.2377 2.0 9144 0.3433 0.8097
0.1578 3.0 13716 0.2905 0.7674
0.1118 4.0 18288 0.2715 0.8336
0.0733 5.0 22860 0.2761 0.8431
0.0534 6.0 27432 0.2985 0.8317
0.038 7.0 32004 0.3253 0.8465
0.0263 8.0 36576 0.3477 0.8485
0.0202 9.0 41148 0.3713 0.8468
0.0165 10.0 45720 0.3877 0.8123
0.0119 11.0 50292 0.4046 0.8492
0.0104 12.0 54864 0.4154 0.8396
0.0095 13.0 59436 0.4326 0.8415
0.0071 14.0 64008 0.4367 0.8458
0.006 15.0 68580 0.4485 0.8615
0.0055 16.0 73152 0.4544 0.8623
0.0044 17.0 77724 0.4618 0.8547
0.0037 18.0 82296 0.4613 0.8643
0.0034 19.0 86868 0.4720 0.8631
0.0033 20.0 91440 0.4731 0.8623
0.0026 21.0 96012 0.4849 0.861
0.0026 22.0 100584 0.4795 0.8701
0.002 23.0 105156 0.4890 0.8657
0.0021 24.0 109728 0.4876 0.8691
0.0016 25.0 114300 0.4916 0.8684
0.0017 26.0 118872 0.4931 0.8566
0.001 27.0 123444 0.4985 0.8606

Framework versions

  • Transformers 4.45.1
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.0
  • Tokenizers 0.20.0
Downloads last month
42
Safetensors
Model size
209M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for bowphs/evacun-lemmatization-vanilla

Finetuned
(2)
this model