File size: 10,719 Bytes
0a85d32 6bafb93 0a85d32 6bafb93 0a85d32 58df5bc 0a85d32 75892bb 0a85d32 58829cb 0a85d32 cc76133 0a85d32 d784073 14eb0c5 f829957 0a85d32 b912762 0a85d32 af794f4 f829957 5a1c952 0a85d32 f829957 5a1c952 795db4a b912762 58829cb b912762 0a85d32 f829957 0a85d32 f829957 58829cb 0a85d32 f829957 62bda9c f829957 62bda9c 0a85d32 f829957 62bda9c 0a85d32 62bda9c 0a85d32 f829957 0a85d32 f829957 0a85d32 f829957 0a85d32 f829957 0a85d32 f829957 0a85d32 f829957 0a85d32 f829957 0a85d32 f829957 0a85d32 f829957 0a85d32 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 |
---
license_name: bria-2.3
license: other
license_link: https://bria.ai/bria-huggingface-model-license-agreement/
library_name: diffusers
inference: false
tags:
- text-to-image
- legal liability
- commercial use
- ID preservation Adapter
extra_gated_description: Model weights from BRIA AI can be obtained with the purchase of a commercial license. Fill in the form below and we reach out to you.
extra_gated_heading: "Fill in this form to request a commercial license for the model"
extra_gated_fields:
Name: text
Company/Org name: text
Org Type (Early/Growth Startup, Enterprise, Academy): text
Role: text
Country: text
Email: text
By submitting this form, I agree to BRIA’s Privacy policy and Terms & conditions, see links below: checkbox
---
# BRIA 2.3 ID preservation Adapter
BRIA 2.3 ID preservation Adapter is a model designed to allows various style transfer operations or tweaks on facial image using textual prompts. The model is fully compatible with auxiliary models like ControlNets and LoRAs, enabling seamless integration into existing workflows.
Trained exclusively on the largest multi-source commercial-grade licensed dataset, BRIA 2.3 ID preservation Adapter guarantees best quality while safe for commercial use. The model provides full legal liability coverage for copyright and privacy infrigement and harmful content mitigation, as our dataset does not represent copyrighted materials, such as fictional characters, logos or trademarks, public figures, harmful content or privacy infringing content.
This model is optimized to work sseamlessly in high resolution, upper body part facial images.
Join our [Discord community](https://discord.gg/Nxe9YW9zHS) for more information, tutorials, tools, and to connect with other users!
# What's New
BRIA 2.3 ID preservation Adapter can be applied on top of BRIA 2.3 Text-to-Image and therefore enable to use BRIA auxiliary models.
### Model Description
- **Developed by:** BRIA AI
- **Model type:** Latent diffusion image-to-image model
- **License:** [bria-2.3 inpainting Licensing terms & conditions](https://bria.ai/bria-huggingface-model-license-agreement/).
- Purchase is required to license and access the model.
- **Model Description:** BRIA 2.3 ID preservation Adapter was trained exclusively on a professional-grade, licensed dataset. It is designed for commercial use and includes full legal liability coverage.
- **Resources for more information:** [BRIA AI](https://bria.ai/)
### Get Access to the source code and pre-trained model
Interested in BRIA 2.3 ID preservation Adapter? Our Model is available for purchase.
**Purchasing access to BRIA 2.3 ID preservation Adapter ensures royalty management and full liability for commercial use.**
*Are you a startup or a student?* We encourage you to apply for our specialized Academia and [Startup Programs](https://pages.bria.ai/the-visual-generative-ai-platform-for-builders-startups-plan?_gl=1*cqrl81*_ga*MTIxMDI2NzI5OC4xNjk5NTQ3MDAz*_ga_WRN60H46X4*MTcwOTM5OTMzNC4yNzguMC4xNzA5Mzk5MzM0LjYwLjAuMA..) to gain access. These programs are designed to support emerging businesses and academic pursuits with our cutting-edge technology.
**Contact us today to unlock the potential of BRIA 2.3 ID preservation Adapter!**
By submitting the form above, you agree to BRIA’s [Privacy policy](https://bria.ai/privacy-policy/) and [Terms & conditions](https://bria.ai/terms-and-conditions/).
### Best practices:
1. In your text prompt, start with a short description of the person in the image e.g., A Caucasian female with brown eyes and gray long hair.
2. Use a protrait image with large face (~20-80% of the image).
3. Use clean background (or use Bria's RMBG) - this will help you with the canny condition.
4. You can add style images, and apply using Bria's IP adapter
5. You can train your own LoRA on your desired style and use within this model.
### How To Use
#### install requirements
```python
# Tested with Python 3.10.16
opencv-python==4.10.0.84
torch==2.4.0
torchvision==0.19.0
pillow==10.4.0
transformers==4.43.4
diffusers==0.29.2
insightface==0.7.3
onnx==1.16.2
onnxruntime==1.18.1
accelerate==0.33.0
huggingface-hub==0.27.1
```
#### download needed files
```python
from huggingface_hub import snapshot_download, hf_hub_download
# Download face encoder
snapshot_download("fal/AuraFace-v1", local_dir="./models/auraface")
# download checkpoints
hf_hub_download(repo_id="briaai/BRIA-2.3-ID_Preservation", filename="checkpoint_105000/controlnet/config.json", local_dir="./checkpoints")
hf_hub_download(repo_id="briaai/BRIA-2.3-ID_Preservation", filename="checkpoint_105000/controlnet/diffusion_pytorch_model.safetensors", local_dir="./checkpoints")
hf_hub_download(repo_id="briaai/BRIA-2.3-ID_Preservation", filename="checkpoint_105000/ip-adapter.bin", local_dir="./checkpoints")
hf_hub_download(repo_id="briaai/BRIA-2.3-ID_Preservation", filename="image_encoder/pytorch_model.bin", local_dir="./checkpoints")
hf_hub_download(repo_id="briaai/BRIA-2.3-ID_Preservation", filename="image_encoder/config.json", local_dir="./checkpoints")
# download needed files
hf_hub_download(repo_id="briaai/BRIA-2.3-ID_Preservation", filename="pipeline_bria_id_preservation.py", local_dir=".")
hf_hub_download(repo_id="briaai/BRIA-2.3-ID_Preservation", filename="ip_adapter/attention_processor.py", local_dir=".")
hf_hub_download(repo_id="briaai/BRIA-2.3-ID_Preservation", filename="ip_adapter/resampler.py", local_dir=".")
hf_hub_download(repo_id="briaai/BRIA-2.3-ID_Preservation", filename="ip_adapter/utils.py", local_dir=".")
```
#### inference
```python
import cv2
import torch
import numpy as np
from PIL import Image
from transformers import CLIPVisionModelWithProjection
from diffusers.models import ControlNetModel
from insightface.app import FaceAnalysis
from pipeline_bria_id_preservation import BriaIDPreservationDiffusionPipeline, draw_kps
# Util functions
def resize_img(input_image, max_side=1280, min_side=1024, size=None,
pad_to_max_side=False, mode=Image.BILINEAR, base_pixel_number=64):
w, h = input_image.size
if size is not None:
w_resize_new, h_resize_new = size
else:
ratio = min_side / min(h, w)
w, h = round(ratio*w), round(ratio*h)
ratio = max_side / max(h, w)
input_image = input_image.resize([round(ratio*w), round(ratio*h)], mode)
w_resize_new = (round(ratio * w) // base_pixel_number) * base_pixel_number
h_resize_new = (round(ratio * h) // base_pixel_number) * base_pixel_number
input_image = input_image.resize([w_resize_new, h_resize_new], mode)
if pad_to_max_side:
res = np.ones([max_side, max_side, 3], dtype=np.uint8) * 255
offset_x = (max_side - w_resize_new) // 2
offset_y = (max_side - h_resize_new) // 2
res[offset_y:offset_y+h_resize_new, offset_x:offset_x+w_resize_new] = np.array(input_image)
input_image = Image.fromarray(res)
return input_image
def make_canny_condition(image, min_val=100, max_val=200, w_bilateral=True):
if w_bilateral:
image = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2GRAY)
bilateral_filtered_image = cv2.bilateralFilter(image, d=9, sigmaColor=75, sigmaSpace=75)
image = cv2.Canny(bilateral_filtered_image, min_val, max_val)
else:
image = np.array(image)
image = cv2.Canny(image, min_val, max_val)
image = image[:, :, None]
image = np.concatenate([image, image, image], axis=2)
image = Image.fromarray(image)
return image
# ================= Parameters =================
default_negative_prompt = "Text,Ugly,Morbid,Mutation,Blurry,Gross proportions,Long neck,Duplicate,Mutilated,Poorly drawn face,Deformed,Bad anatomy,Cloned face"
resolution = 1024
seed = 12345
device = "cuda" if torch.cuda.is_available() else "cpu"
# ckpts paths
face_adapter = f"./checkpoints/checkpoint_105000/ip-adapter.bin"
controlnet_path = f"./checkpoints/checkpoint_105000/controlnet"
base_model_path = f'briaai/BRIA-2.3'
# ================= Prepare face encoder =================
app = FaceAnalysis(
name="auraface",
providers=["CUDAExecutionProvider", "CPUExecutionProvider"],
root=".",
)
app.prepare(ctx_id=0, det_size=(640, 640))
# ================= Prepare pipeline =================
# Load ControlNet models
controlnet_lnmks = ControlNetModel.from_pretrained(controlnet_path, torch_dtype=torch.float16)
controlnet_canny = ControlNetModel.from_pretrained("briaai/BRIA-2.3-ControlNet-Canny",
torch_dtype=torch.float16)
controlnet = [controlnet_lnmks, controlnet_canny]
image_encoder = CLIPVisionModelWithProjection.from_pretrained(
f"./checkpoints/image_encoder",
torch_dtype=torch.float16,
)
pipe = BriaIDPreservationDiffusionPipeline.from_pretrained(
base_model_path,
controlnet=controlnet,
torch_dtype=torch.float16,
image_encoder=image_encoder # For compatibility issues - needs to be there
)
pipe = pipe.to(device)
pipe.use_native_ip_adapter=True
pipe.load_ip_adapter_instantid(face_adapter)
clip_embeds=None
image_path = "<Set your image path>"
img = Image.open(image_path)
face_image = resize_img(img, max_side=resolution, min_side=resolution)
face_image_padded = resize_img(img, max_side=resolution, min_side=resolution, pad_to_max_side=True)
face_info = app.get(cv2.cvtColor(np.array(face_image), cv2.COLOR_RGB2BGR))
face_info = sorted(face_info, key=lambda x:(x['bbox'][2]-x['bbox'][0])*(x['bbox'][3]-x['bbox'][1]))[-1] # only use the maximum face
face_emb = face_info['embedding']
face_kps = draw_kps(face_image, face_info['kps'])
# ================= Parameters =================
kps_scale = 0.6
canny_scale = 0.4
ip_adapter_scale = 0.8
num_inference_steps = 30
guidance_scale = 5.0
prompt = "A male with brown eyes, blonde hair, short hair, in a white shirt, smiling, with a neutral background, cartoon style"
if canny_scale>0.0:
canny_img = make_canny_condition(face_image, min_val=20, max_val=40, w_bilateral=True)
generator = torch.Generator(device=device).manual_seed(seed)
images = pipe(
prompt = prompt,
negative_prompt = default_negative_prompt,
image_embeds = face_emb,
image = [face_kps, canny_img] if canny_scale>0.0 else face_kps,
controlnet_conditioning_scale = [kps_scale, canny_scale] if canny_scale>0.0 else kps_scale,
ip_adapter_scale = ip_adapter_scale,
num_inference_steps = num_inference_steps,
guidance_scale = 5.0,
generator = generator,
visual_prompt_embds = clip_embeds,
cross_attention_kwargs = None,
num_images_per_prompt=1,
).images[0]
```
|