Improve language tag

#1
by lbourdois - opened
Files changed (1) hide show
  1. README.md +83 -69
README.md CHANGED
@@ -1,70 +1,84 @@
1
- ---
2
- base_model: Qwen/Qwen2.5-0.5B-Instruct
3
- datasets: DigitalLearningGmbH/MATH-lighteval
4
- library_name: transformers
5
- model_name: Qwen-2.5-7B-Simple-RL
6
- tags:
7
- - generated_from_trainer
8
- - open-r1
9
- - trl
10
- - grpo
11
- licence: license
12
- ---
13
-
14
- # Model Card for Qwen-2.5-7B-Simple-RL
15
-
16
- This model is a fine-tuned version of [Qwen/Qwen2.5-0.5B-Instruct](https://huggingface.co/Qwen/Qwen2.5-0.5B-Instruct) on the [DigitalLearningGmbH/MATH-lighteval](https://huggingface.co/datasets/DigitalLearningGmbH/MATH-lighteval) dataset.
17
- It has been trained using [TRL](https://github.com/huggingface/trl).
18
-
19
- ## Quick start
20
-
21
- ```python
22
- from transformers import pipeline
23
-
24
- question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
25
- generator = pipeline("text-generation", model="bryanlincoln/Qwen-2.5-7B-Simple-RL", device="cuda")
26
- output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
27
- print(output["generated_text"])
28
- ```
29
-
30
- ## Training procedure
31
-
32
- [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/bryanoliveira/huggingface/runs/mkr9hxkg)
33
-
34
-
35
- This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300).
36
-
37
- ### Framework versions
38
-
39
- - TRL: 0.16.0.dev0
40
- - Transformers: 4.50.0.dev0
41
- - Pytorch: 2.5.1
42
- - Datasets: 3.3.2
43
- - Tokenizers: 0.21.0
44
-
45
- ## Citations
46
-
47
- Cite GRPO as:
48
-
49
- ```bibtex
50
- @article{zhihong2024deepseekmath,
51
- title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}},
52
- author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo},
53
- year = 2024,
54
- eprint = {arXiv:2402.03300},
55
- }
56
-
57
- ```
58
-
59
- Cite TRL as:
60
-
61
- ```bibtex
62
- @misc{vonwerra2022trl,
63
- title = {{TRL: Transformer Reinforcement Learning}},
64
- author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
65
- year = 2020,
66
- journal = {GitHub repository},
67
- publisher = {GitHub},
68
- howpublished = {\url{https://github.com/huggingface/trl}}
69
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
70
  ```
 
1
+ ---
2
+ base_model: Qwen/Qwen2.5-0.5B-Instruct
3
+ datasets: DigitalLearningGmbH/MATH-lighteval
4
+ library_name: transformers
5
+ model_name: Qwen-2.5-7B-Simple-RL
6
+ tags:
7
+ - generated_from_trainer
8
+ - open-r1
9
+ - trl
10
+ - grpo
11
+ licence: license
12
+ language:
13
+ - zho
14
+ - eng
15
+ - fra
16
+ - spa
17
+ - por
18
+ - deu
19
+ - ita
20
+ - rus
21
+ - jpn
22
+ - kor
23
+ - vie
24
+ - tha
25
+ - ara
26
+ ---
27
+
28
+ # Model Card for Qwen-2.5-7B-Simple-RL
29
+
30
+ This model is a fine-tuned version of [Qwen/Qwen2.5-0.5B-Instruct](https://huggingface.co/Qwen/Qwen2.5-0.5B-Instruct) on the [DigitalLearningGmbH/MATH-lighteval](https://huggingface.co/datasets/DigitalLearningGmbH/MATH-lighteval) dataset.
31
+ It has been trained using [TRL](https://github.com/huggingface/trl).
32
+
33
+ ## Quick start
34
+
35
+ ```python
36
+ from transformers import pipeline
37
+
38
+ question = "If you had a time machine, but could only go to the past or the future once and never return, which would you choose and why?"
39
+ generator = pipeline("text-generation", model="bryanlincoln/Qwen-2.5-7B-Simple-RL", device="cuda")
40
+ output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0]
41
+ print(output["generated_text"])
42
+ ```
43
+
44
+ ## Training procedure
45
+
46
+ [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/bryanoliveira/huggingface/runs/mkr9hxkg)
47
+
48
+
49
+ This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300).
50
+
51
+ ### Framework versions
52
+
53
+ - TRL: 0.16.0.dev0
54
+ - Transformers: 4.50.0.dev0
55
+ - Pytorch: 2.5.1
56
+ - Datasets: 3.3.2
57
+ - Tokenizers: 0.21.0
58
+
59
+ ## Citations
60
+
61
+ Cite GRPO as:
62
+
63
+ ```bibtex
64
+ @article{zhihong2024deepseekmath,
65
+ title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}},
66
+ author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo},
67
+ year = 2024,
68
+ eprint = {arXiv:2402.03300},
69
+ }
70
+
71
+ ```
72
+
73
+ Cite TRL as:
74
+
75
+ ```bibtex
76
+ @misc{vonwerra2022trl,
77
+ title = {{TRL: Transformer Reinforcement Learning}},
78
+ author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
79
+ year = 2020,
80
+ journal = {GitHub repository},
81
+ publisher = {GitHub},
82
+ howpublished = {\url{https://github.com/huggingface/trl}}
83
+ }
84
  ```