bryanzhou008's picture
Model save
79f5dd2 verified
metadata
library_name: transformers
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: vit-base-patch16-224-in21k-finetuned-eurosat
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: validation
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.6694444444444444

vit-base-patch16-224-in21k-finetuned-eurosat

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 2.8131
  • Accuracy: 0.6694

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 128
  • eval_batch_size: 128
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 512
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 0.8 2 3.0840 0.2347
No log 2.0 5 3.0057 0.4417
No log 2.8 7 2.9600 0.5167
2.9996 4.0 10 2.9047 0.5861
2.9996 4.8 12 2.8741 0.6111
2.9996 6.0 15 2.8391 0.6403
2.9996 6.8 17 2.8236 0.6597
2.8231 8.0 20 2.8131 0.6694

Framework versions

  • Transformers 4.45.2
  • Pytorch 2.4.1+cu121
  • Datasets 2.21.0
  • Tokenizers 0.20.1