SentenceTransformer based on huggingface/CodeBERTa-small-v1
This is a sentence-transformers model finetuned from huggingface/CodeBERTa-small-v1. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: huggingface/CodeBERTa-small-v1
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("buelfhood/SOCO-Java-CodeBERTa-ST-1")
# Run inference
sentences = [
'\npackage java.httputils;\n\nimport java.io.IOException;\nimport java.net.HttpURLConnection;\nimport java.net.MalformedURLException;\nimport java.net.URL;\nimport java.sql.Timestamp;\n\n\npublic class BasicAuthHttpRequest extends HttpRequestClient\n{\n String userName;\n String password;\n \n protected BasicAuthHttpRequest(String url, String userName, String password)\n throws MalformedURLException, IOException\n {\n setPassword(password);\n setUserName(userName);\n setServerURL(new URL(url));\n \n setStart(new Timestamp(System.currentTimeMillis()));\n\n String userPassword = userName + ":" + password;\n\n \n String encoding = new url.misc.BASE64Encoder().encode (userPassword.getBytes());\n\n \n\n setHttpConnection(\n (HttpURLConnection)this.getServerURL().openConnection());\n\n \n getHttpConnection().setRequestProperty ("Authorization", " " + encoding);\n doRequest();\n }\n\n \n protected BasicAuthHttpRequest(String url)\n throws MalformedURLException, IOException\n {\n super(url);\n }\n\n \n public BasicAuthHttpRequest()\n {\n super();\n }\n\n\n \n public String getPassword()\n {\n return password;\n }\n\n \n public String getUserName()\n {\n return userName;\n }\n\n \n public void setPassword(String string)\n {\n password = string;\n }\n\n \n public void setUserName(String string)\n {\n userName = string;\n }\n\n public static void main (String[] args)\n {\n BasicAuthHttpRequest client = null;\n try\n {\n client = new BasicAuthHttpRequest(args[0], args[1], args[2]);\n }\n catch (MalformedURLException e)\n {\n e.printStackTrace();\n }\n catch (IOException e)\n {\n e.printStackTrace();\n }\n finally\n {\n if (client != null && client.getCode() != HttpURLConnection.HTTP_UNAUTHORIZED)\n {\n System.out.println(\n "Request response : \\n" + client.getCode());\n\n\n System.out.println(\n "Request processing time (milliseconds): " +\n (client.getEnd().getTime() - client.getStart().getTime()));\n\n System.out.println(\n "Request content: \\n" + client.getContent());\n }\n else\n {\n System.out.println(\n "Request response : \\n" + client.getCode());\n\n\n }\n }\n }\n}\n',
'import java.io.*;\nimport java.net.*;\nimport java.security.*;\nimport java.math.*;\nimport java.*;\nimport java.util.*;\n\n\npublic class WatchDog\n{\n public static FileWriter out = null, output = null;\n\n public static void main (String args[]) throws Exception {\n\tSocket socket = null;\n\tDataOutputStream = null;\n\tBufferedReader bf = null, fr = null;\n\tString retVal = null, StatusCode = "HTTP/1.1 200 OK";\n int dirty = 0, count = 0;\n\n stime = System.currentTimeMillis();\n System.out.println("Detecting the changes...");\n\n try {\n\n\t \n URL yahoo = new URL("http://www.cs.rmit.edu./students/");\n URLConnection yc = yahoo.openConnection();\n\n \n BufferedReader in = new BufferedReader(\n new InputStreamReader(\n yc.getInputStream()));\n\n String inputLine;\n try {\n out = new FileWriter("newstudent");\n while ((inputLine = in.readLine()) != null){\n out.write(inputLine + "\\n");\n }\n } catch (IOException ex) {\n ex.printStackTrace();\n }\n in.print();\n out.print();\n\n dirty = diff();\n if (dirty == 1){\n sendMail();\n System.out.println("Changes detected and email sent!");\n }\n\n if (diffimages() == 1){\n sendMail();\n System.out.println("Images modification detected and email sent!");\n }\n\n updatePage();\n System.out.println("** End of WatchDog checking **");\n\n } catch (Exception ex) {\n ex.printStackTrace();\n }\n }\n\n public static int diff()\n {\n int update = 0;\n\n try{\n Process process = Runtime.getRuntime().exec("diff -b RMITCSStudent newstudent");\n BufferedReader pr = new BufferedReader(\n new InputStreamReader(\n process.getInputStream()));\n\n output = new FileWriter("output");\n String inputLine;\n while ((inputLine = pr.readLine()) != null){\n output.write(inputLine + "\\n");\n update = 1;\n }\n output.promt();\n\n }catch (Exception ex){\n ex.printStackTrace();\n }\n return update;\n }\n\n public static int diffimages()\n {\n int update = 0;\n String image;\n\n try{\n Process primages = Runtime.getRuntime().exec("./images.sh");\n wait(1);\n File imageFile = new File("imagesname");\n BufferedReader fr = new BufferedReader(new FileReader(imageFile));\n\n output = new FileWriter("output");\n while ((image = fr.readLine()) != null) {\n primages = Runtime.getRuntime().exec("diff " + image + " o"+image);\n BufferedReader pr = new BufferedReader(\n new InputStreamReader(\n primages.getInputStream()));\n\n String inputLine;\n while ((inputLine = pr.readLine()) != null){\n output.write(inputLine + "\\n");\n update = 1;\n }\n }\n output.print();\n fr.close();\n\n }catch (Exception ex){\n ex.printStackTrace();\n }\n return update;\n }\n\n public static void sendMail()\n {\n try{\n Process mailprocess = Runtime.getRuntime().exec("./email.sh");\n }catch (Exception ex){\n ex.printStackTrace();\n }\n }\n\n public static void updatePage()\n {\n String image;\n\n try{\n Process updateprocess = Runtime.getRuntime().exec("cp newstudent RMITCSStudent");\n Process deleteprocess = Runtime.getRuntime().exec("rm newstudent");\n\n File inputFile = new File("imagesname");\n BufferedReader fr = new BufferedReader(new FileReader(inputFile));\n while ((image = fr.readLine()) != null) {\n updateprocess = Runtime.getRuntime().exec("cp " + image + " o" + image);\n deleteprocess = Runtime.getRuntime().exec("rm " + image);\n }\n fr.close();\n }catch (Exception ex){\n ex.printStackTrace();\n }\n }\n\n public static void wait(int time){\n\t int timer, times;\n\t timer = System.currentTimeMillis();\n\t times = (time * 1000) + timer;\n\n\t while(timer < times)\n\t\t\ttimer = System.currentTimeMillis();\n\t}\n}',
'import java.net.*;\nimport java.io.*;\n\n\npublic class EmailClient\n{\n\tprivate String sender, recipient, hostName;\n\n\tpublic EmailClient(String nSender, String nRecipient, String nHost)\n\t{\n\t\tsender = nSender;\n\t\trecipient = nRecipient;\n\t\thostName = nHost;\n\t}\n\n\tpublic void sendMail(String subject, String message)\n\t{\n\t\ttry\n\t\t{\n\t\t\tSocket s1=null;\n\t\t\tInputStream\tis = null;\n\t\t\tOutputStream os = null;\n\n\t\t\tDataOutputStream = null;\n\n\t\t\ts1 = new Socket(hostName,25);\n\t\t\tis = s1.getInputStream();\n\t\t\tos = s1.getOutputStream();\n\n\t\t\tbd = new DataOutputStream(os);\n\n\t\t\tBufferedReader response = new BufferedReader(new InputStreamReader(is));\n\n\t\t\tbd.writeBytes("HELO "+ InetAddress.getLocalHost().getHostName() + "\\r\\n");\n\n\t\t\twaitForSuccessResponse(response);\n\n\t\t\tbd.writeBytes("MAIL FROM:"+sender+"\\n");\n\n\t\t\twaitForSuccessResponse(response);\n\n\t\t\tbd.writeBytes("RCPT :"+recipient+"\\n");\n\n\t\t\twaitForSuccessResponse(response);\n\n\t\t\tbd.writeBytes("data"+"\\n");\n\n\t\t\tbd.writeBytes("Subject:"+subject+"\\n");\n\n\t\t\tbd.writeBytes(message+"\\n.\\n");\n\n\t\t\twaitForSuccessResponse(response);\n\t\t}\n\n\t\tcatch (UnknownHostException badUrl)\n\t\t{\n\t\t\tSystem.out.println("Host unknown.");\n\t\t}\n\n\t\tcatch (EOFException eof)\n\t\t{\n\t\t\tSystem.out.println("<EOF>");\n\t\t}\n\t\tcatch (Exception e)\n\t\t{\n\t\t\tSystem.out.println("got exception: "+e);\n\t\t}\n\t}\n\n\tprivate static void\twaitForSuccessResponse(BufferedReader response) throws IOException\n\t{\n\t\tString rsp;\n\t\tboolean r250 = false;\n\n\t\twhile( ! r250 )\n\t\t{\n\t\t\trsp = response.readLine().trim();\n\n\t\t\tif(rsp.startsWith("250"))\n\t\t\t\tr250 = true;\n\t\t}\n\n\t}\n}',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Dataset
Unnamed Dataset
- Size: 33,411 training samples
- Columns:
sentence_0
,sentence_1
, andlabel
- Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 label type string string int details - min: 51 tokens
- mean: 444.12 tokens
- max: 512 tokens
- min: 54 tokens
- mean: 462.06 tokens
- max: 512 tokens
- 0: ~99.80%
- 1: ~0.20%
- Samples:
sentence_0 sentence_1 label
import java.net.;
import java.io.;
import java.Runtime;
public class WatchDog{
public WatchDog(){}
public void copyTo(){
}
public static void main(String[] args) throws Exception {
WatchDog wd= new WatchDog();
SendEMail t = new SendEMail();
PrintWriter pw=null;
URL url = new URL("http://www.cs.rmit.edu./students");
URLConnection yc = url.openConnection();
System.out.println("Connection opened...");
BufferedReader in = new BufferedReader(new InputStreamReader(yc.getInputStream()));
String inputLine;
try{
pw=new PrintWriter(new FileOutputStream("newHtml"));
while ((inputLine = in.readLine()) != null){
pw.println(inputLine);
}
pw.save();
}catch(IOException e){
System.out.println("Error saving the file");
}
Process p = Runtime.getRuntime().exec("diff -b newHtml oldHtml");
...
import java.io.;
import java.net.;
import java.;
import java.util.;
public class DictionaryAttack
{
public static void main ( String args[])
{
String function,pass,temp1;
int count =0;
try{
FileReader fr = new FileReader("words.txt");
BufferedReader bfread = new BufferedReader(fr);
Runtime rtime = Runtime.getRuntime();
Process prs = null;
while(( bf = bfread.readLine()) != null)
{
if( f.length() < 4 )
{
System.out.println(+ " The Attack Number =====>" + count++ );
pass = f;
function ="wget --http-user= --http-passwd="+pass+" http://sec-crack.cs.rmit.edu./SEC/2/";
prs = rtime.exec(function);
InputStreamReader stre = new InputStreamReader(prs.getErrorStream());
BufferedReader bread = new BufferedReader(stre);
while( (temp1 = bread.readLine())!= null)
{
System.out.println(temp1);
if(temp1.equals("HTTP request sent, awaiting resp...0
import java.net.;
import java.io.;
import java.util.;
public class WatchDog
{
public WatchDog()
{
}
public static void main(String[] args)
{
try
{
if( args.length != 2 )
{
System.out.println("USAGE: java WatchDog ");
System.exit(0);
}
Runtime.getRuntime().exec("rm LastWatch.html");
Runtime.getRuntime().exec("rm WatchDog.ini");
Thread.sleep(1000);
while (true)
{
WatchDog myWatchDog = new WatchDog();
myWatchDog.readHTML(args[0], args[1]);
Runtime.getRuntime().exec("rm Report.txt");
Runtime.getRuntime().exec("rm diffReport.txt");
Runtime.getRuntime().exec("rm NewWatch.txt");
System.out.println(" check after 2 ... press Ctrl-Z suspend WatchDog...");
Thread.sleep(260*1000);
}
...
import java.net.;
import java.io.;
class MyAuthenticator extends Authenticator {
String password;
public MyAuthenticator(String pwdin) {
password = pwdin;
}
protected PasswordAuthentication getPasswordAuthentication(){
String pwd = password;
return new PasswordAuthentication("",pwd.toCharArray());
}
}0
import java.Runtime;
import java.io.*;
public class differenceFile
{
StringWriter sw =null;
PrintWriter pw = null;
public differenceFile()
{
sw = new StringWriter();
pw = new PrintWriter();
}
public String compareFile()
{
try
{
Process = Runtime.getRuntime().exec("diff History.txt Comparison.txt");
InputStream write = sw.getInputStream();
BufferedReader bf = new BufferedReader (new InputStreamReader(write));
String line;
while((line = bf.readLine())!=null)
pw.println(line);
if((sw.toString().trim()).equals(""))
{
System.out.println(" difference");
return null;
}
System.out.println(sw.toString().trim());
}catch(Exception e){}
return sw.toString().trim();
}
}
public class HoldSharedData
{
private int numOfConnections = 0;
private int startTime;
private int totalTime = 0;
private String[] password;
private int pwdCount;
public HoldSharedData( int time, String[] pwd, int count )
{
startTime = time;
password = pwd;
pwdCount = count;
}
public int getPwdCount()
{
return pwdCount;
}
public void setNumOfConnections( )
{
numOfConnections ++;
}
public int getNumOfConnections()
{
return numOfConnections;
}
public int getStartTime()
{
return startTime;
}
public void setTotalTime( int newTotalTime )
{
totalTime = newTotalTime;
}
public int getTotalTime()
{
return totalTime;
}
public String getPasswordAt( int index )
{
return password[index];
}
}0
- Loss:
BatchAllTripletLoss
Training Hyperparameters
Non-Default Hyperparameters
per_device_train_batch_size
: 16per_device_eval_batch_size
: 16num_train_epochs
: 1fp16
: Truemulti_dataset_batch_sampler
: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: noprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1num_train_epochs
: 1max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: round_robin
Training Logs
Epoch | Step | Training Loss |
---|---|---|
0.2393 | 500 | 0.2031 |
0.4787 | 1000 | 0.1761 |
0.7180 | 1500 | 0.1914 |
0.9574 | 2000 | 0.2044 |
Framework Versions
- Python: 3.11.13
- Sentence Transformers: 4.1.0
- Transformers: 4.52.4
- PyTorch: 2.6.0+cu124
- Accelerate: 1.7.0
- Datasets: 3.6.0
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
BatchAllTripletLoss
@misc{hermans2017defense,
title={In Defense of the Triplet Loss for Person Re-Identification},
author={Alexander Hermans and Lucas Beyer and Bastian Leibe},
year={2017},
eprint={1703.07737},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
- Downloads last month
- 5
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for buelfhood/SOCO-Java-CodeBERTa-ST-1
Base model
huggingface/CodeBERTa-small-v1