SentenceTransformer based on Salesforce/codet5-small

This is a sentence-transformers model finetuned from Salesforce/codet5-small. It maps sentences & paragraphs to a 512-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: Salesforce/codet5-small
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 512 dimensions
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: T5EncoderModel 
  (1): Pooling({'word_embedding_dimension': 512, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("buelfhood/SOCO-Java-CodeT5Small-ST")
# Run inference
sentences = [
    '\n\n\n\n\n\nimport java.io.*;\nimport java.net.*;\n\n\n\npublic class Dictionary\n{\n   public static void main (String args[]) throws IOException,\n   MalformedURLException\n   {\n      final String username = "";\n      final String fullurl = "http://sec-crack.cs.rmit.edu./SEC/2/";\n      final String dictfile = "/usr/share/lib/dict/words";\n      String temppass;\n      String password = "";\n      URL url = new URL(fullurl);\n      boolean cracked = false;\n\n       startTime = System.currentTimeMillis();\n\n      \n      BufferedReader r = new BufferedReader(new FileReader(dictfile));\n\n      while((temppass = r.readLine()) != null && !cracked)\n      {  \n         \n         if(temppass.length() <= 3)\n         {\n            \n            if(isAlpha(temppass))\n            {\n               \n               Authenticator.setDefault(new MyAuthenticator(username,temppass));\n               try{\n                  BufferedReader x = new BufferedReader(new InputStreamReader(\n                     url.openStream()));\n                  cracked = true;\n                  password = temppass;\n               } catch(Exception e){}\n            }\n         }\n      }\n\n       stopTime = System.currentTimeMillis();\n      \n      if(!cracked)\n         System.out.println("Sorry, couldnt find the password");\n      else\n         System.out.println("Password found: "+password);\n      System.out.println("Time taken: "+(stopTime-startTime));\n   }\n\n   public static boolean isAlpha(String s)\n   {\n      boolean v = true;\n      for(int i=0; i<s.length(); i++)\n      {\n         if(!Character.isLetter(s.charAt(i)))\n            v = false;\n      }\n      return ;\n   }\n}\n\n',
    '\n\nimport java.net.*;\nimport java.text.*;  \nimport java.util.*;  \nimport java.io.*;\n\npublic class WatchDog {\n\n  public WatchDog() {\n\n    StringBuffer stringBuffer1 = new StringBuffer();\n    StringBuffer stringBuffer2 = new StringBuffer();\n    int i,j = 0;\n\n    try{\n\n      URL yahoo = new URL("http://www.cs.rmit.edu./students/"); \n      BufferedReader in = new BufferedReader(new InputStreamReader(yahoo.openStream()));\n\n      String inputLine = "";\n      String inputLine1 = "";\n      String changedtext= "";\n      String changedflag= "";\n\n\n      Thread.sleep(180);\n\n      BufferedReader in1 = new BufferedReader(new InputStreamReader(yahoo.openStream()));\n\n\n      while ((inputLine = in.readLine()) != null) {\n           inputLine1 = in1.readLine();\n           if (inputLine.equals(inputLine1)) {\n              System.out.println("equal");\n           }\n           else {\n              System.out.println("Detected a Change");\n              System.out.println("Line Before the change:" + inputLine);\n              System.out.println("Line After the change:" + inputLine1);\n              changedtext = changedtext + inputLine + inputLine1;\n              changedflag = "Y";\n           }\n           \n      }\n\n      if (in1.readLine() != null ) {\n         System.out.println("Detected a Change");\n         System.out.println("New Lines Added  ");\n         changedtext = changedtext + "New Lines added";\n         changedflag = "Y";\n      }\n\n      in.print();\n      in1.print();\n\n      if (changedflag.equals("Y")) {\n         String smtphost ="smtp.mail.rmit.edu." ; \n         String from = "@rmit.edu."; \n         String  = "janaka1@optusnet.." ; \n      }\n\n\n    }\n    catch(Exception e){ System.out.println("exception:" + e);}\n\t \n}\n\t\t\n    public static void main (String[] args) throws Exception {\n\t\tWatchDog u = new WatchDog();\n    }\n}\n',
    '\n\n\n\nimport java.util.*;\nimport java.net.*;\nimport java.io.*;\nimport javax.swing.*;\n\npublic class PasswordCombination\n{\n    private int      pwdCounter = 0;\n    private   int   startTime;\n    private String   str1,str2,str3;\n    private String   url = "http://sec-crack.cs.rmit.edu./SEC/2/";\n    private String   loginPwd;\n    private String[] password;\n    private HoldSharedData data;\n    private char[] chars = {\'A\',\'B\',\'C\',\'D\',\'E\',\'F\',\'G\',\'H\',\'I\',\'J\',\'K\',\'L\',\'M\',\n                            \'N\',\'O\',\'P\',\'Q\',\'R\',\'S\',\'T\',\'U\',\'V\',\'W\',\'X\',\'Y\',\'Z\',\n                            \'a\',\'b\',\'c\',\'d\',\'e\',\'f\',\'g\',\'h\',\'i\',\'j\',\'k\',\'l\',\'m\',\n                            \'n\',\'o\',\'p\',\'q\',\'r\',\'s\',\'t\',\'u\',\'v\',\'w\',\'x\',\'y\',\'z\'};\n\n    public PasswordCombination()\n    {\n        System.out.println("Programmed by   for INTE1070 Assignment 2");\n\n        String input = JOptionPane.showInputDialog( "Enter number of threads" );\n        if(  input == null  )\n           System.exit(0);\n\n        int numOfConnections = Integer.parseInt( input );\n        startTime = System.currentTimeMillis();\n        int pwdCounter = 52*52*52 + 52*52 + 52;\n        password = new String[pwdCounter];\n\n\n        loadPasswords();\n        System.out.println( "Total Number of Passwords: " + pwdCounter );\n        createConnectionThread( numOfConnections );\n    }\n\n    private void doPwdCombination()\n    {\n        for( int i = 0; i < 52; i ++ )\n        {\n            str1 = "" + chars[i];\n            password[pwdCounter++] = "" + chars[i];\n            System.err.print( str1 + " | " );\n\n            for( int j = 0; j < 52; j ++ )\n            {\n                str2 = str1 + chars[j];\n                password[pwdCounter++] = str1 + chars[j];\n\n                for( int k = 0; k < 52; k ++ )\n                {\n                    str3 = str2 + chars[k];\n                    password[pwdCounter++] = str2 + chars[k];\n                }\n            }\n        }\n    }\n\n    private void loadPasswords( )\n    {\n        FileReader     fRead;\n        BufferedReader buf;\n        String         line = null;\n        String         fileName = "words";\n\n        try\n        {\n            fRead = new FileReader( fileName );\n            buf = new BufferedReader(fRead);\n\n            while((line = buf.readLine( )) != null)\n            {\n                password[pwdCounter++] = line;\n            }\n        }\n        catch(FileNotFoundException e)\n        {\n            System.err.println("File not found: " + fileName);\n        }\n        catch(IOException ioe)\n        {\n            System.err.println("IO Error " + ioe);\n        }\n    }\n\n    private void createConnectionThread( int input )\n    {\n        data = new HoldSharedData( startTime, password, pwdCounter );\n\n        int numOfThreads = input;\n        int batch = pwdCounter/numOfThreads + 1;\n        numOfThreads = pwdCounter/batch + 1;\n        System.out.println("Number of Connection Threads Used=" + numOfThreads);\n        ConnectionThread[] connThread = new ConnectionThread[numOfThreads];\n\n        for( int index = 0; index < numOfThreads; index ++ )\n        {\n            connThread[index] = new ConnectionThread( url, index, batch, data );\n            connThread[index].conn();\n        }\n    }\n}  ',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 512]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Training Details

Training Dataset

Unnamed Dataset

  • Size: 33,411 training samples
  • Columns: sentence_0, sentence_1, and label
  • Approximate statistics based on the first 1000 samples:
    sentence_0 sentence_1 label
    type string string int
    details
    • min: 52 tokens
    • mean: 444.58 tokens
    • max: 512 tokens
    • min: 52 tokens
    • mean: 470.35 tokens
    • max: 512 tokens
    • 0: ~99.80%
    • 1: ~0.20%
  • Samples:
    sentence_0 sentence_1 label





    import java.util.;
    import java.io.
    ;

    public class MyTimer
    {

    public static void main(String args[])
    {
    Watchdog watch = new Watchdog();
    Timer time = new Timer();
    time.schedule(watch,864000000,864000000);


    }
    }


    import java.io.;
    import java.
    ;
    import java.net.;
    import java.util.
    ;

    public class Dictionary {
    public static void main (String[] args) throws IOException {
    BufferedReader stdin = new BufferedReader (new InputStreamReader(System.in));

    d = new Date().getTime();
    FileReader fr = new FileReader("/usr/share/lib/dict/words");
    BufferedReader bufr = new BufferedReader(fr);
    String word = bufr.readLine();
    int total = 960;
    String[] pws = new String[total];
    int count = 0;
    while (word!=null){
    if (word.length()<=3) { pws[count] = word; count++;}
    word = bufr.readLine();
    }

    int i=0;
    int response = 0;
    for (i=0;i String uname = "";
    String userinfo = uname + ":" + pws[i];
    try{
    String encoding = new bf.misc.BASE64Encoder().encode (userinfo.getBytes());
    URL url = new URL("http://sec-crack.cs.rmit.edu./SEC/2/");
    HttpURLConn...
    0

    import java.io.;
    import java.util.
    ;


    class BruteForce{

    public static void main(String args[]){

    String pass,s;
    char a,b,c;
    int z=0;
    int attempt=0;
    Process p;


    char password[]={'A','B','C','D','E','F','G','H','I','J','K','L','M','N','O','P','Q',
    'R','S','T','U','V','W','X','Y','Z','a','b','c','d','e','f','g','h',
    'i','j','k','l','m','n','o','p','q','r','s','t','u','v','w','x','y','z'};
    z = System.currentTimeMillis();
    int at=0;
    for(int i=0;i for(int j=0;j for(int k=0;k pass=String.valueOf(password[i])+String.valueOf(password[j])+String.valueOf(password[k]);

    try {
    System.out.println("Trying crack using: "+pass);
    at++;


    p = Runtime.getRuntime().exec("wget --http-user= --http-passwd="+pass+" http://sec-crack.cs.rmit.edu./SEC/2/index.php");
    try{
    p.waitFor();
    }
    catch(Exception q){}


    z = p.exitValue();


    ...

    import java.io.*;
    import java.util.Vector;
    import java.util.Date;


    interface UnaryPredicate {
    boolean execute(Object obj);
    }


    public class DiffPrint {

    static String outFile="";

    public static abstract class Base {
    protected Base(Object[] a,Object[] b) {
    try
    {
    outfile = new PrintWriter(new FileWriter(outFile));
    }
    catch (Exception e)
    {
    e.printStackTrace();
    }
    file0 = a;
    file1 = b;
    }

    protected UnaryPredicate ignore = null;


    protected Object[] file0, file1;


    public void print_script(Diff.change script) {
    Diff.change next = script;

    while (next != null)
    {
    Diff.change t, end;


    t = next;
    end = hunkfun(next);


    next = end;
    end = null;




    print_hunk(t);


    end = next;
    }
    outfile.flush();
    }



    protected Diff.change hunkfun(Diff.change hunk) {
    ...
    0
    package java.httputils;

    import java.io.BufferedInputStream;
    import java.io.BufferedOutputStream;
    import java.io.BufferedReader;
    import java.io.FileInputStream;
    import java.io.FileNotFoundException;
    import java.io.FileOutputStream;
    import java.io.FileReader;
    import java.io.IOException;
    import java.io.OutputStream;


    public class WatchDog
    {
    protected final int MILLIS_IN_HOUR = (60 * 60 * 1000);
    protected int interval = 24;
    protected String URL = "http://www.cs.rmit.edu./students/";
    protected String fileName = "WatchDogContent.html";
    protected String command = "./alert_mail.sh";
    protected String savedContent;
    protected String retrievedContent;


    public WatchDog()
    {
    super();
    }


    public void run() throws Exception
    {
    HttpRequestClient client = null;


    System.out.println(getClass().getName() +
    "Retrieving baseline copy of: " + getURL());
    client = new HttpRequestClie...


    import java.;
    import java.io.
    ;
    import java.util.*;

    public class Dictionary
    {
    public String[] passwds;
    public int passwdNum;
    public static void main(String[] args) throws IOException
    {
    Dictionary dic=new Dictionary();
    dic.doDictionary();
    System.exit(1);
    }

    void doDictionary() throws IOException
    {
    Runtime rt=Runtime.getRuntime();
    passwds=new String[32768];
    passwdNum=0;

    time1=new Date().getTime();

    try
    {
    File f = new File ("words");
    FileReader fin = new FileReader (f);
    BufferedReader buf = new BufferedReader(fin);
    passwds[0]="00";
    System.out.println(" loading words....");

    {
    passwds[passwdNum]=buf.readLine();
    passwdNum++;
    }while(passwds[passwdNum-1]!=null);
    System.out.println("Finish loading words.");
    } catch (FileNotFoundException exc) {
    System.out.println ("File Not Found");
    } catch (IOException exc) {
    System.out.println ("IOException 1");
    } catch (NullPointerException exc) {
    System.out.println ("NullPointerEx...
    0
  • Loss: BatchAllTripletLoss

Training Hyperparameters

Non-Default Hyperparameters

  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • num_train_epochs: 1
  • multi_dataset_batch_sampler: round_robin

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: no
  • prediction_loss_only: True
  • per_device_train_batch_size: 16
  • per_device_eval_batch_size: 16
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1
  • num_train_epochs: 1
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.0
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: round_robin

Training Logs

Epoch Step Training Loss
0.2393 500 0.2122
0.4787 1000 0.1686
0.7180 1500 0.2193
0.9574 2000 0.2084

Framework Versions

  • Python: 3.11.13
  • Sentence Transformers: 4.1.0
  • Transformers: 4.52.4
  • PyTorch: 2.6.0+cu124
  • Accelerate: 1.7.0
  • Datasets: 3.6.0
  • Tokenizers: 0.21.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

BatchAllTripletLoss

@misc{hermans2017defense,
    title={In Defense of the Triplet Loss for Person Re-Identification},
    author={Alexander Hermans and Lucas Beyer and Bastian Leibe},
    year={2017},
    eprint={1703.07737},
    archivePrefix={arXiv},
    primaryClass={cs.CV}
}
Downloads last month
9
Safetensors
Model size
35.3M params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for buelfhood/SOCO-Java-CodeT5Small-ST

Finetuned
(67)
this model