SentenceTransformer based on uclanlp/plbart-java-cs
This is a sentence-transformers model finetuned from uclanlp/plbart-java-cs. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: uclanlp/plbart-java-cs
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: PLBartModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("buelfhood/SOCO-Java-PLBART-ST")
# Run inference
sentences = [
'\nimport java.util.*;\n\npublic class WatchDog\n{\n private Timer t;\n\n public WatchDog()\n {\n t = new Timer();\n TimerTask task = new TimerTask()\n {\n public void run()\n\t {\n\t Dog doggy = new Dog();\n\t }\n };\n \n t.schedule(task, 0, 86400000);\n }\n public static void main( String[] args)\n {\n WatchDog wd = new WatchDog();\n }\n}\n',
'import\tjava.io.*;\n\nclass WatchDog {\n public static void main(String args[]) {\n \n\t if (args.length<1)\n\t {\n System.out.println("Correct Format Filename email address <[email protected].> of the recordkeeper"); \n System.exit(1);\t\n\t }\n\n\twhile (true)\n\t\t{\n\t\t\n\t\t\n FileInputStream stream=null;\n DataInputStream word=null;\n String input=" "; \n\n\n\ttry {\n\n\n String ls_str;\n \n \t \n\t Process ls_proc = Runtime.getRuntime().exec("wget http://www.cs.rmit.edu./students");\n \t\ttry {\n\t\tThread.sleep(2000);\n\t\t}catch (Exception e) {\n System.err.println("Caught ThreadException: " +e.getMessage());\n\t }\n\n\t\tString[] cmd = {"//sh","-c", "diff Index2.html index.html >report.txt "};\n\n\t ls_proc = Runtime.getRuntime().exec(cmd);\n\t\t \n\t\t\t\n\t\t\ttry {\n\t\tThread.sleep(2000);\n\t\t}catch (Exception e) {\n System.err.println("Caught ThreadException: " +e.getMessage());\n\t }\n\t\t\n\t\t\n\t\t\n\t\tif (ls_proc.exitValue()==2) \n\t\t{\n\t\t \t System.out.println("The file was checked for first time, email sent");\n\n Process move = Runtime.getRuntime().exec("mv index.html Index2.html");\n\t\t \n\n\t\t}\n\t\telse\n\t\t{\n\n\t\t\t\tstream = new FileInputStream ("report.txt"); \n\t\t\t\tword =new DataInputStream(stream);\n\n\n\t\t\t\tif (word.available() !=0)\n\t\t\t\t{\n\n\t\t\t\t\ttry\n\t\t\t\t\t{\n\n\t\t\t\t\tString[] cmd1 = {"//sh","-c","diff Index2.html index.html | mail "+args[0]};\n\t\t\t\t\t Process proc = Runtime.getRuntime().exec(cmd1);\n\t\t\t\t\t Thread.sleep(2000);\n\t\t\t\t\tProcess move = Runtime.getRuntime().exec("mv index.html Index2.html");\n\t\t\t\t\tThread.sleep(2000);\n\t\t\t\t\tSystem.out.println("Difference Found , Email Sent");\n\n\t\t\t\t\t}\n\t\t\t\t\tcatch (Exception e1) {\n\t\t\t\t\t\t\tSystem.err.println(e1);\n\t\t\t\t\t\t\tSystem.exit(1);\n\t\t\t\t\t\t\n\t\t\t\t\t \n\t\t\t\t\t\t}\n\t\t\t\t\t \n\t \n\t \n\t\t\t\t }\n\t\t\t\t else\n\t\t\t\t\t{\n\t\t\t\t\t\t System.out.println(" Differnce Detected");\n\n\n\t\t\t\t\t}\n\t\t}\n\t}\n\t\n\n\t catch (IOException e1) {\n\t System.err.println(e1);\n\t System.exit(1);\n\t\n \n\t}\ntry\n{\nword.close();\nstream.close(); \n\t\n}\n \ncatch (IOException e)\n{ \nSystem.out.println("Error in closing input file:\\n" + e.toString()); \n} \n \t\ntry {\nThread.sleep(20000); \n }\ncatch (Exception e) \n\t{\nSystem.err.println("Caught ThreadException: " +e.getMessage());\n\t}\n\t\t\n\n } \n\n\t} \n\t\n }',
'\n\n\n\nimport java.io.InputStream;\nimport java.util.Properties;\n\nimport javax.naming.Context;\nimport javax.naming.InitialContext;\nimport javax.rmi.PortableRemoteObject;\nimport javax.sql.DataSource;\n\n\n\n\npublic class BruteForcePropertyHelper {\n\n\tprivate static Properties bruteForceProps;\n\n\n\n\tpublic BruteForcePropertyHelper() {\n\t}\n\n\n\t\n\n\tpublic static String getProperty(String pKey){\n\t\ttry{\n\t\t\tinitProps();\n\t\t}\n\t\tcatch(Exception e){\n\t\t\tSystem.err.println("Error init\'ing the burteforce Props");\n\t\t\te.printStackTrace();\n\t\t}\n\t\treturn bruteForceProps.getProperty(pKey);\n\t}\n\n\n\tprivate static void initProps() throws Exception{\n\t\tif(bruteForceProps == null){\n\t\t\tbruteForceProps = new Properties();\n\n\t\t\tInputStream fis =\n\t\t\t\tBruteForcePropertyHelper.class.getResourceAsStream("/bruteforce.properties");\n\t\t\tbruteForceProps.load(fis);\n\t\t}\n\t}\n}\n\n',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Dataset
Unnamed Dataset
- Size: 33,411 training samples
- Columns:
sentence_0
,sentence_1
, andlabel
- Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 label type string string int details - min: 35 tokens
- mean: 413.67 tokens
- max: 512 tokens
- min: 35 tokens
- mean: 432.24 tokens
- max: 512 tokens
- 0: ~99.70%
- 1: ~0.30%
- Samples:
sentence_0 sentence_1 label
import java.io.;
import java.util.;
import java.net.*;
public class Dictionary {
public static void main(String[] args) {
String attackURL = "http://sec-crack.cs.rmit.edu./SEC/2/index.php";
String userID = "";
String Password="";
String userPassword="";
File inputFile = new File("/usr/share/lib/dict/words");
FileReader fin = null;
BufferedReader bf = null;
try {
startmillisecond = System.currentTimeMillis();
URL url = new URL(attackURL);
fin = new FileReader(inputFile);
bf = new BufferedReader(fin);
int count = 0;
while ((Password = bf.readLine()) !=null) {
if (Password.length() < 4) {
count++;
try {
userPassword = userID + ":" + Password;
System.out.println("User & Password :" + userPassword);
String encoding = Base64Converter.encode (userPassword.getBytes());
URLConnection uc = url.openConnection();
uc.setRequestProperty ("Authorization", " " + enc...
public class Base64 {
final static String baseTable = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
public static String encode(byte[] bytes) {
String tmp = "";
int i = 0;
byte pos;
for(i=0; i < (bytes.length - bytes.length%3); i+=3) {
pos = (byte) ((bytes[i] >> 2) & 63);
tmp = tmp + baseTable.charAt(pos);
pos = (byte) (((bytes[i] & 3) << 4) + ((bytes[i+1] >> 4) & 15));
tmp = tmp + baseTable.charAt( pos );
pos = (byte) (((bytes[i+1] & 15) << 2) + ((bytes[i+2] >> 6) & 3));
tmp = tmp + baseTable.charAt(pos);
pos = (byte) (((bytes[i+2]) & 63));
tmp = tmp + baseTable.charAt(pos);
if(((i+2)%56) == 0) {
tmp = tmp + "\r\n";
}
}
if(bytes.length % 3 != 0) {
if(bytes.length % 3 == 2) {
pos = (byte) ((bytes[i] >> 2) & 63);
tmp = tmp + baseTable.charAt(pos);
pos = (byte) (((bytes[i] & 3) << 4) + ((bytes[i+1] >> 4) & 15));
tmp = tmp + baseTable.charAt( pos );
...0
import java.io.*;
public class Dictionary
{
public static void main(String args[])throws Exception
{
String s = null;
String pass="";
int at=0;
String strLine="";
int i=0;
BufferedReader in = new BufferedReader(new FileReader("/usr/share/lib/dict/words"));
start =System.currentTimeMillis();
try
{
while((pass=strLine = in.readLine()) != null)
{
if(pass.length()==3)
{
System.out.println(pass);
at++;
Process p = Runtime.getRuntime().exec("wget --http-user= --http-passwd="+pass+" http://sec-crack.cs.rmit.edu./SEC/2/index.php");
p.waitFor();
i = p.exitValue();
if(i==0)
{
finish=System.currentTimeMillis();
...import java.util.;
import java.io.;
public class WatchDog {
public WatchDog() {
}
public static void main(String args[]) {
DataInputStream newin;
try{
System.out.println("Downloading first copy");
Runtime.getRuntime().exec("wget http://www.cs.rmit.edu./students/ -O oldfile.html");
String[] cmdDiff = {"//sh", "-c", "diff oldfile.html newfile.html > Diff.txt"};
String[] cmdMail = {"//sh", "-c", "mailx -s "Diffrence" "@cs.rmit.edu." < Diff.txt"};
while(true){
Thread.sleep(246060*1000);
System.out.println("Downloading new copy");
Runtime.getRuntime().exec("wget http://www.cs.rmit.edu./students/ -O newfile.html");
Thread.sleep(2000);
Runtime.getRuntime().exec(cmdDiff);
Thread.sleep(2000);
newin = new DataInputStream( new FileInputStream( "Diff.txt"));
if (newin.readLine() != null){
System.out.println("Sending Mail");
...0
import java.Thread;
import java.io.;
import java.net.;
public class BruteForce extends Thread {
final char[] CHARACTERS = {'A','a','E','e','I','i','O','o','U','u','R','r','N','n','S','s','T','t','L','l','B','b','C','c','D','d','F','f','G','g','H','h','J','j','K','k','M','m','P','p','V','v','W','w','X','x','Z','z','Q','q','Y','y'};
final static int SUCCESS=1,
FAILED=0,
UNKNOWN=-1;
private static String host,
path,
user;
private Socket target;
private InputStream input;
private OutputStream output;
private byte[] data;
private int threads,
threadno,
response;
public static boolean solved = false;
BruteForce parent;
public BruteForce(String host, String path, String user, int threads, int threadno, BruteForce parent)
{
super();
this.parent = parent;
this.host = host;
this.path = path;
this.user ...
import java.io.;
import java.net.;
import javax.swing.Timer;
import java.awt.event.*;
import javax.swing.JOptionPane;
public class WatchDog
{
private static Process pro = null;
private static Runtime run = Runtime.getRuntime();
public static void main(String[] args)
{
String cmd = null;
try
{
cmd = new String("wget -O original.txt http://www.cs.rmit.edu./students/");
pro = run.exec(cmd);
System.out.println(cmd);
}
catch (IOException e)
{
}
class Watch implements ActionListener
{
BufferedReader in = null;
String str = null;
Socket socket;
public void actionPerformed (ActionEvent event)
{
try
{
System.out.println("in Watch!");
String cmd = new String();
int ERROR = 1;
cmd = new String("wget -O new.txt http://www.cs.rmit.edu./students/");
System.out.println(cmd);
cmd = new String("diff original.txt new.txt");
pro = run.exec(cmd);
System.out.println(cmd);
in = new Buf...0
- Loss:
BatchAllTripletLoss
Training Hyperparameters
Non-Default Hyperparameters
per_device_train_batch_size
: 32per_device_eval_batch_size
: 32num_train_epochs
: 1fp16
: Truemulti_dataset_batch_sampler
: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: noprediction_loss_only
: Trueper_device_train_batch_size
: 32per_device_eval_batch_size
: 32per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1num_train_epochs
: 1max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: round_robin
Training Logs
Epoch | Step | Training Loss |
---|---|---|
0.4785 | 500 | 0.3437 |
0.9569 | 1000 | 0.3653 |
Framework Versions
- Python: 3.11.13
- Sentence Transformers: 4.1.0
- Transformers: 4.52.4
- PyTorch: 2.6.0+cu124
- Accelerate: 1.7.0
- Datasets: 3.6.0
- Tokenizers: 0.21.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
BatchAllTripletLoss
@misc{hermans2017defense,
title={In Defense of the Triplet Loss for Person Re-Identification},
author={Alexander Hermans and Lucas Beyer and Bastian Leibe},
year={2017},
eprint={1703.07737},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
- Downloads last month
- 5
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for buelfhood/SOCO-Java-PLBART-ST
Base model
uclanlp/plbart-java-cs